Statistics for counting experiments

R. J. WilkesDept. of Physics, UW8/8/02

Probability

Frequency theory of probability

– Prob(event) = <u>How many times event happened</u>

How many opportunities for it to happen

Unless denominator is large (*high statistics experiment*), we have only a relatively poor estimate of the "true" probability
 -- assumed to be due to some underlying "law"

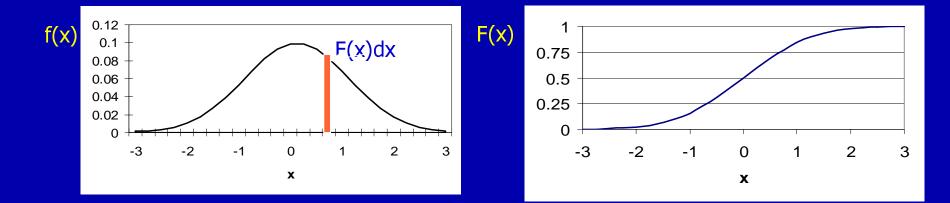
Man-in-the-Street views of probability

- Fallacies about denominators
 - "90% of our flights arrive on time"
 - » correct statement: "flights delayed several hours are cancelled, not 'delayed', so they get excluded from our average"
 - "The average worker is making 10% more now than he was 10 years ago"
 - » correct statement: "the minimum wage has risen, and more low-income people are unemployed"
- Fallacies about independence
 - "This slot machine hasn't paid off in a long time, so I'm sure to win soon"
 - » correct statement: "If this slot machine is truly random, i am no more likely to win on the next try as at any other time"
 - "Nobody's won the state lottery in a long time, so it is more likely to happen this week"
 - » correct statement: "Nobody's won the state lottery in a long time, so the payoff is bigger"
- ...or both combined
 - "Our survey shows most people lose 10 pounds in a month on this diet"
 - » correct statement: "happy customers who lost weight were most likely to respond to our survey; the ones who gained weight most likely threw away our postcard..."

Probability distributions and PDFs

- Probability Density Function (PDF) = f(x)
 - probability of x in range x' to x'+dx
- "Probability distribution" = F(x)
 - cumulative or integral distribution = probability of x<x'</p>

$$F(x) = \int_{x_{MIN}}^{x} f(x) dx$$
 (where x_{MIN} could be $-\infty$



Descriptive parameters for PDFs

 Measures of central location: mean <x> = Σ x_i / N (sample mean) median = x at which F(x)=0.5 mode = x at which f(x)=maximum for symmetrical distributions, mean=median

 Measures of width of distributions: *variance* σ² (σ = standard deviation) σ² = Σ(x_i - μ₁)² / N but μ₁ = mean of *true* PDF we can only *estimate* μ₁ with <x> Best estimator for σ² is s² = Σ(x_i - <x>)² / (N -1) = sample variance

Counting statistics

- We have a set of data = N measurements of some sort:
 { x₁ x₂ x₃ ... x_N }
- Statistic = a function of the data only no unknown parameters examples:
 - Sample mean (experimental mean)
 - Median

sort the data in ascending or descending order

median = the (N/2)th entry in this list

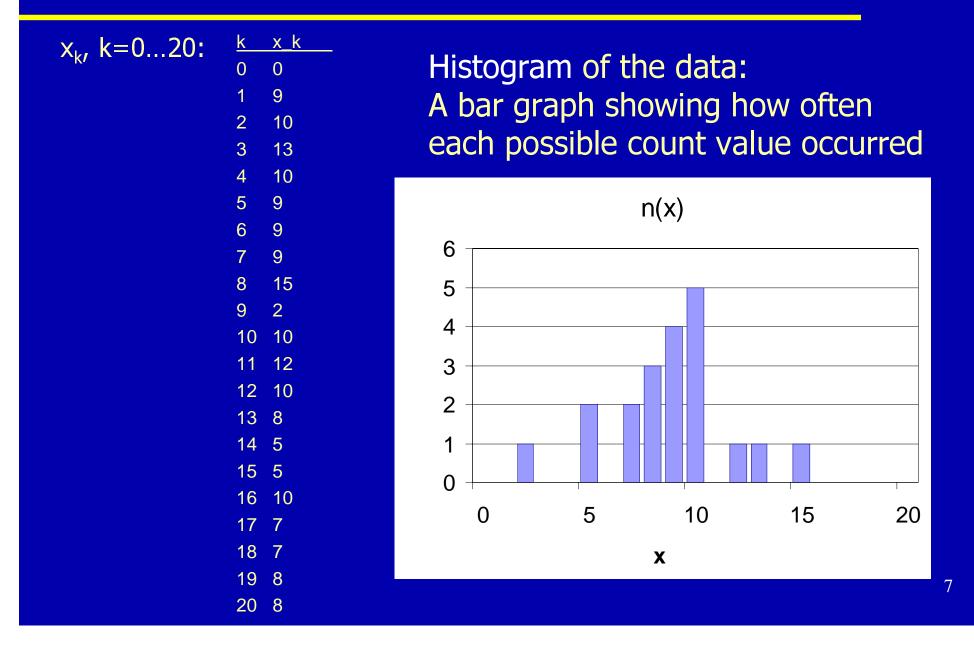
- Mode
 - » Value with maximum probability density: location of peak of PDF

 x_i such that $P(x_i) = \max P(x)$

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

 $x_{MED} = x_N$ in $sort_{\uparrow}(\{x_i\})$

Example: 20 sets of 1 minute counts

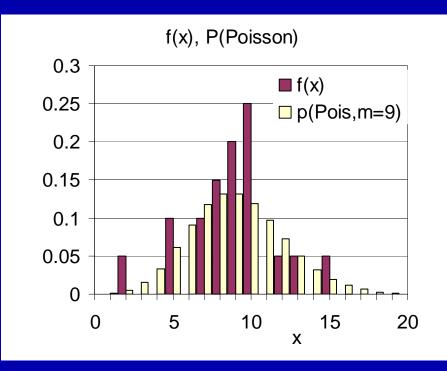


Frequency distribution

Х	n(x)	f(x)
x 0 1 2 3 4 5 6 7	0	0
1		0
2	0 1	0.05
3	0	0
4	0 2	0
5		0.1
6	0	0
7	2	0.1
8	3	0.15
9	4	0.2
10	4 5 0	0.25
11	0	0
12	1	0.05
13	1	0.05
14	0	0
15	1	0.05
16	0	0
17	0	0
18	0 0 0 0	0 0 0
19	0	0
20	0	0

• Use the histogram to <i>estimate</i> probability of
each possible x value: f(x)=n(x)/N

 This is the Probability Density Function (PDF) or differential probability distribution
 (also shown below is the Poisson probability density function for mean value = 9 -- more on this later)



Statistics of the data set

sample mean:
sum of data: 176
sample mean = sum/20: 8.8

sample variance:

Some famous probability distributions and their applications

♦ Uniform

basis for generating numbers for simulations (computer pseudo-random number generators)

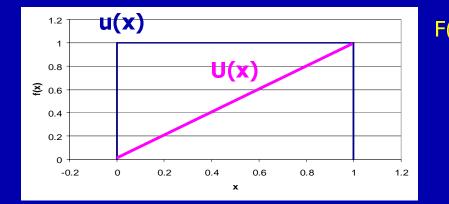
binomial

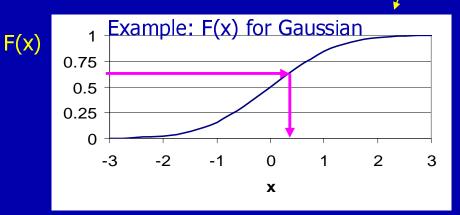
- Yes/No situations
- Poisson
 - Many physics applications
 - Applies when P(event) is "small" and "independent of previous history"
- Gaussian (Normal)
 - Applies to results produced a series of random processes
 - » Most scientific data are acquired through a series of processes, each with some random error contribution!

Uniform distribution

- Uniform PDF: $u(x) = constant = 1/(x_{max} x_{min})$
 - basic PDF supplied on computers: u(0;1)=1
 - Properties: $\langle x \rangle = (x_{max} + x_{min})/2$, $\sigma^2 = (x_{max} + x_{min})^2 / 12$
 - Any PDF can be obtained from u(x) by inverting its integral distribution F(x)

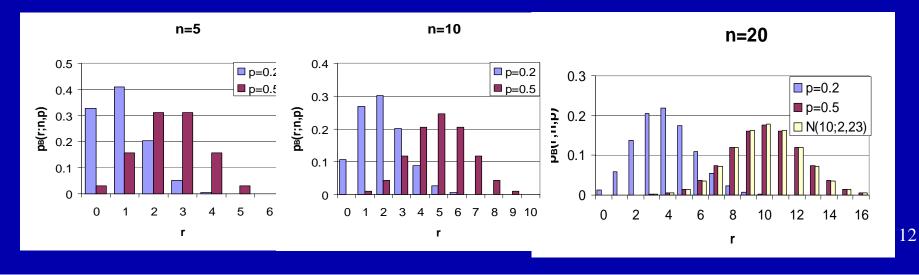
» Can use this to generate random numbers for simulations, etc Choose uniform random number on [0,1] and use it to select x from F(x)Example: Exponential distribution $f(y)=\exp(-y)$ Exercise: show $y = -\ln(1-x)$ (with x uniformly distributed) is exponentially distributed.





Binomial Distribution

- Applies to cases with binary outcomes like coin flips:
 - 0/1, heads/tails, T/F, yes/no, win/lose, success/failure
- *Discrete-valued* PDF gives P(n_{SUCCESSES} = integer)
- 2 parameters: p(success per trial = real), N_{TRIALS}
 - P(n successes followed by (N-n) failures)
 - $= p^{n} (1-p)^{N-n}$ (independent trials: multiply trial probs.)
 - But we don't care about order in which they occur: number of permutations is N! / (n!(N-n)!)so $P(n; p,N) = \{N! / (n!(N-n)!)\} p^n (1-p)^{N-n}$
- Properties: $\mu = Np$, $\sigma^2 = Np(1-p) = \mu (1-p)$, ~ Gaussian for large Np



Poisson distribution

- Limiting case of binomial distribution for $p \rightarrow 0$
- only 1 parameter: mean value μ
 P(n successes | μ expected) = (1/ n!) μⁿ exp(-μ)
 n is integer; μ can be real
- Properties:

variance $\sigma^2 = \mu$, so standard deviation $\sigma = sqrt(\mu)$

- Applies when *Poisson assumptions* are valid:
 - 1. P(event) in interval δx is *proportional to* δx : p=g δx
 - 2. Occurrence of an event in an interval δx_j is *independent* of events or absence of events in any other non-overlapping interval δx_k
 - 3. For sufficiently small δx , there can be at most 1 event in δx

Example of a Poisson Process

Bubbles in a bubble chamber track

Prob of 1 bubble in $\delta x: p_1(\delta x) = g \delta x$ (from #1) Prob of 0 bubbles in $\delta x: p_0(\delta x) = 1 - p_1 = 1 - g \delta x$ (from #3) $p_0(x + \delta x) = p_0(x) \bullet p_0(\delta x) = p_0(x)(1 - g \delta x)$ (from #2) $\therefore \frac{p_0(x + \delta x) - p_0(x)}{\delta x} = -g$ $p_0(x) \rightarrow \frac{dp_0}{dx} = -gp_0$ Solution: $p_0(x) = e^{-gx}$ So $p_0(x) = exponential distribution$ Prob of exactly r bubbles in $x + \delta x$:

 $p_{r}(x + \delta x) = p_{r}(x) \bullet p_{0}(\delta x) + p_{r-1}(x) \bullet p_{1}(\delta x) \quad (from \ \#3)$ $\therefore \frac{p_{r}(x + \delta x) - p_{r}(x)}{\delta x} \to \frac{dp_{r}}{dx} = -gp_{r}(x) + gp_{r-1}(x)$ Solution: $p_{r}(x) = \frac{1}{r!}(gx)^{r}e^{-gx} = \text{Poisson distribution} \quad (\mu = gx)$

Gaussian (Normal) distribution

- Gaussian = famous "bell-shaped curve"
 - Describes IQ scores, number of ants in a colony of a given species, wear profile on old stone stairs...
 - All these are cases where:
 - deviation from norm is equally probable in either direction
 - Variable is continuous (or large enough integer to look continuous far from the "wall" at zero)
- *Real-valued* PDF: $f(x) \rightarrow -\infty < x < +\infty$ N(x; μ,σ)= (1/sqrt[$2\pi\sigma^2$]) exp[-(x- μ)²/ $2\sigma^2$]
- 2 independent parameters: μ , σ (central location and width)

```
Properties:
```

```
Symmetrical, mode at \mu,
median=mean=mode, Inflection points at \pm \sigma
Cumulative distribution :
```

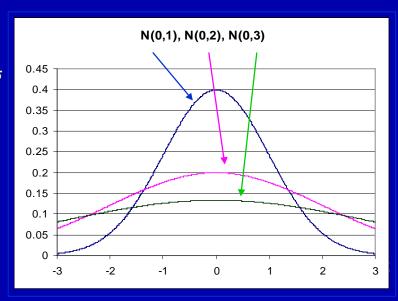
 $\int_{-\infty}^{\infty} n(x;0,1) dx = erf(x)$

Area (probability of observing event) within:

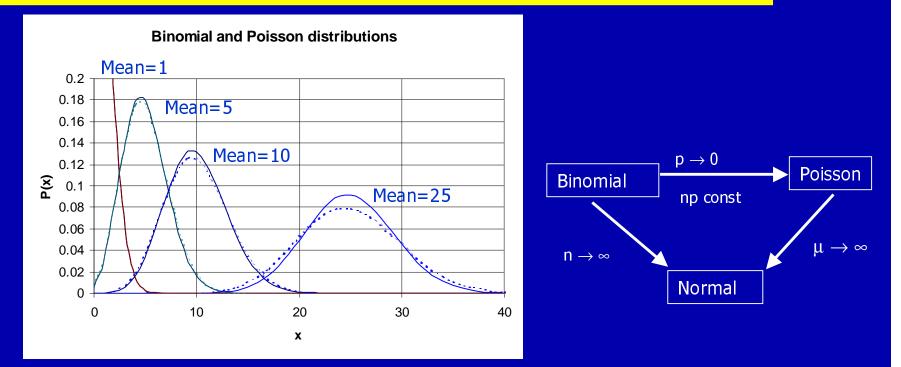
 $\pm 1\sigma = 0.683$ = erf(1)-erf(-1)

 $\pm 2\sigma = 0.955$ = erf(2)-erf(-2)

For larger σ , bell shaped curve becomes wider and lower (since area =1 for any σ)



Binomial, Poisson, Gaussian



Shown above:

- Binomial for 100 trials, p=0.01, 0.05, 0.10, 0.25 (solid)
- Poisson for $\mu = 1, 5, 10, 25$ (dashed line)

Poisson is broader and has peak slightly below μ Both become similar to Gaussian N(μ , $\sigma = \sqrt{\mu}$) as mean value gets larger (Gaussian would be indistinguishable from Poisson for mean=25 on this plot)

Why the Normal Distribution is important...

• Central Limit Theorem:

Given N independent random variables x_k , each with mean μ_k and variance σ_k specified (but *not* details of individual PDF's), the random variable $z = \sum x_k$ has

$$\mu_Z = \Sigma \ \mu_k$$
 and $\sigma_Z^2 = \Sigma \ \sigma_k^2$,

and for $N \rightarrow \infty,$ its PDF will be Gaussian, i.e. $p(z){=}N(\mu_Z,\,\sigma_Z\,)$

 $(\Sigma x_k - \Sigma \mu_k) / \operatorname{sqrt}[\Sigma \sigma_k^2] = n(x;0,1)$

- Applies to: any situation with real-valued result where several *independent* processes *add:* <u>additive errors</u>. Examples:
 - Random walk of 100 steps. Each step is independent of others, any probability distribution for direction and length of each step (but μ , σ^2 known).
 - To make a simple Gaussian random number generator, just take sum of 12 standard uniformly distributed numbers:

 $x=\Sigma (u_k - 6); x \text{ will be distributed } \sim n(x;0,1)$

(recall: u(0;1) has μ = 0.5, σ ²= 1/12)

• Parameters μ,σ are independent (and converse: if a random variable has μ,σ independent, it is normal).

Given N random numbers x_k drawn from a normal distribution,

the sample mean $\mu = (1/N)\Sigma x_k$

and sample variance $s^2 = \Sigma \sigma_k^2 / (N-1)$

are *independent statistics*

Applications to counting

- Errors in single counts
 - CR counts are a Poisson process, so $\sigma_k^2 = N$, $\sigma_k = \sqrt{N}$
- Errors on histogram bins contents
 - In/out of bin = binomial process, so $\sigma_k^2 = Np_k(1-p_k)$ where $p_k = n_k/N$
 - Poisson approximation $\sigma_k = \sqrt{n_k}$ is valid for $n_k > 10^{-1}$
- Significance of deviations from expectation

Significance of deviations from expectation

Example: counting statistics and limits of detectability

- How can we tell if a significant signal exists in the presence of background?
 - N_{T} = observed counts in time T
 - N_{B} = background counts (separate experiment)
 - Then $N_T = N_S + N_B$ where $N_S =$ true signal counts
 - Assume T is long enough so all counts are "not small" (>>5)
 - Then expect N's to be Poisson distributed (~ Gaussian-distributed), with $\sigma = \sqrt{N}$

 $N_{S} = N_{T} - N_{B}$, so $\sigma_{S}^{2} = \sigma_{T}^{2} + \sigma_{B}^{2}$

- Suppose there is *no real activity* present, N_s actually = 0

 $\sigma_T^2 = \sigma_B^2 \operatorname{so} \sigma_S^2 = 2 \sigma_B^2 \operatorname{or} \sigma_S = \sqrt{2N_B}$

So we expect N_S to be drawn from a Gaussian distribution N(0, $\sqrt{(2N_B)}$)

 Define H₀ = hypothesis that there is no activity present, all we are seeing is background

- Reject H_0 if $N_T > N_C$ = "cut level" for decision How do we define N_C ?

Significance of deviations from expectation

- Decide on a significance level = acceptable probability for being fooled by a random fluctuation
 - If we want, eg, <5% probability of false positive result, we must set N_C at the 5% tail of the Gaussian distribution.
- Example: H_0 = "no radioactive decays from this sample" No-sample run gives 6 counts, assumed to be background $\sigma_S = \sqrt{(2N_B)} = 3.5$

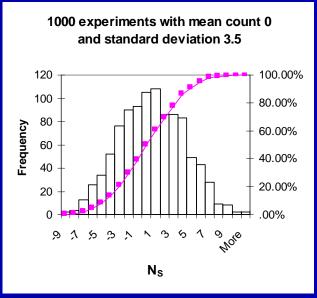
Therefore if $H_0 =$ true, and we count the sample many times,

we would get fewer than:

3.5 counts 68% of the time

7 counts 95% of the time

10.5 counts 99.7% of the time Another way to say it: we can reject H_0 at the 95% confidence level if we observe N>7



"Accidentals"

- Accidentals = Chance coincidences due to uncorrelated noise pulses which happen to arrive within the logic gate's time window
 - Counter 1's pulse arrives (Average spacing is 1/r₁ sec)
 - Logic gate opens a window (note delay)
 - Counter 2's pulse arrives Average spacing is 1/r₂ sec
- If noise is truly random, then the fraction of each second occupied by available coincidence windows is

 $f_{OCCUPIED} = r_1 * t_W$

tw

where r_1 =singles rate of counter 1, Hz; t_w =window width, sec (This is equal to the probability that a randomly selected time lies within a coincidence window)

The rate of 2-fold accidentals will thus be

 $r_{12} = r_2 * f_{OCCUPIED} = r_2 * r_1 * t_W$ (for $r_{1,2} * t <<1$)