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Probability

� Frequency theory of probability

– Prob(event)= How many times event happened    _ 

How many opportunities for it to happen

– Unless denominator is large (high statistics experiment ), we 

have only a relatively poor estimate of the "true" probability 

-- assumed to be due to some underlying "law"
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Man-in-the-Street views of probability

� Fallacies about denominators

– "90% of our flights arrive on time"

» correct statement: "flights delayed several hours are cancelled, not 'delayed', so 

they get excluded from our average"

– "The average worker is making 10% more now than he was 10 years ago"

» correct statement: "the minimum wage has risen, and more low-income people 

are unemployed"

� Fallacies about independence

– "This slot machine hasn't paid off in a long time, so I'm sure to win soon"

» correct statement: "If this slot machine is truly random, i am no more likely to 

win on the next try as at any other time"

– "Nobody's won the state lottery in a long time, so it is more likely to 

happen this week"

» correct statement: "Nobody's won the state lottery in a long time, so the payoff 

is bigger"

� ...or both combined

– "Our survey shows most people lose 10 pounds in a month on this diet"

» correct statement: "happy customers who lost weight were most likely to 

respond to our survey; the ones who gained weight most likely threw away our 

postcard..."
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Probability distributions and PDFs

� Probability Density Function (PDF) = f(x)

– probability of x in range x’ to x’+dx

� “Probability distribution” = F(x)

– cumulative or integral distribution = probability of x<x’
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Descriptive parameters for PDFs

� Measures of central location:

mean <x> = Σ x
i
/ N   (sample mean)

median = x at which F(x)=0.5

mode = x at which f(x)=maximum

for symmetrical distributions, mean=median

� Measures of width of distributions:

variance σ2 ( σ = standard deviation)

σ2 =  Σ(x
i
- µ1 )2 / N  

but µ1 = mean of true PDF

we can only estimate µ1 with <x>

Best estimator for σ2 is 

s2 =  Σ(x
i
- <x>)2 / (N -1) = sample variance
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Counting statistics

� We have a set of data = N measurements of some sort: 

{ x
1
x
2
x
3
… x

N 
}

� Statistic = a function of the data only - no unknown parameters

examples: 

– Sample mean (experimental mean)

– Median

sort the data in ascending or descending order

median = the (N/2)th entry in this list

– Mode 

» Value with maximum probability density: location of peak of PDF
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Example: 20 sets of 1 minute counts

k x_k

0 0

1 9
2 10

3 13

4 10

5 9

6 9

7 9

8 15
9 2

10 10

11 12

12 10

13 8

14 5

15 5
16 10

17 7

18 7

19 8

20 8

n(x)
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Histogram of the data: 
A bar graph showing how often 
each possible count value occurred

x
k
, k=0…20:
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Frequency distribution

x n(x) f(x)

0 0 0

1 0 0
2 1 0.05

3 0 0

4 0 0

5 2 0.1

6 0 0

7 2 0.1

8 3 0.15
9 4 0.2

10 5 0.25

11 0 0

12 1 0.05

13 1 0.05

14 0 0

15 1 0.05
16 0 0

17 0 0

18 0 0

19 0 0

20 0 0

f(x), P(Poisson)
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x
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p(Pois,m=9)

• Use the histogram to estimate probability of 

each possible x value: f(x)=n(x)/N

• This is the Probability Density Function (PDF) 

or differential probability distribution

(also shown below is the Poisson probability density function 
for mean value =  9  -- more on this later)
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Statistics of the data set

� sample  mean:
sum of data: 176
sample mean = sum/20: 8.8

� sample variance:

sorted data
k x_k
0 0
1 2
2 5
3 5
4 7
5 7
6 8
7 8
8 8
9 9
10 9 median
11 9
12 9
13 10
14 10
15 10
16 10
17 10
18 12
19 13
20 15

�median=9
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Some famous probability distributions and their 
applications

� Uniform

– basis for generating numbers for simulations (computer 

pseudo-random number generators)

� binomial

– Yes/No situations

� Poisson

– Many physics applications

– Applies when P(event) is "small" and "independent of 

previous history"

� Gaussian (Normal)

– Applies to results produced a series of random processes

» Most scientific data are acquired through a series of processes,

each with some random error contribution!
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Uniform distribution

� Uniform PDF: u(x) = constant = 1/ (x
max

- x
min

)

– basic PDF supplied on computers: u(0;1)=1

– Properties:  <x>= (x
max

+ x
min
)/2 ,   σ2 = (x

max
+ x

min
)2 / 12   

– Any PDF can be obtained from u(x) by inverting its integral 

distribution F(x)

» Can use this to generate random numbers for simulations, etc

Choose uniform random number on [0,1] and use it to select x from F(x)

Example: Exponential distribution f(y)=exp(-y)

Exercise: show y= - ln(1-x)  (with x uniformly distributed)

is exponentially distributed. 
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Example: F(x) for Gaussian



12

Binomial Distribution

� Applies to cases with binary outcomes like coin flips:

– 0/1, heads/tails, T/F, yes/no, win/lose, success/failure

� Discrete-valued PDF gives P(nSUCCESSES =integer)

� 2 parameters: p(success per trial = real), NTRIALS

– P(n successes followed by (N-n) failures)

= pn (1-p)N-n     (independent trials: multiply trial probs.)

– But we don’t care about order in which they occur: 

number of permutations is  N! /(n!(N-n)!) 

so P(n; p,N) = {N! /(n!(N-n)!)} pn (1-p)N-n

� Properties: µ = Np,   σ2 = Np(1-p) = µ (1-p), ~ Gaussian for large Np

n=20
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Poisson distribution

� Limiting case of binomial distribution for p → 0

� only 1 parameter: mean value µ
P(n successes | µ expected) = (1/ n!) µn exp(− µ)
n is integer; µ can be real

� Properties:

variance σ2 = µ ,   so standard deviation σ = sqrt(µ )

� Applies when Poisson assumptions are valid:

1. P(event) in interval δx is proportional to δx: p=gδx
2. Occurrence of an event in an interval δxj is independent of events 

or absence of events in any other non-overlapping interval δxk

3. For sufficiently small δx, there can be at most 1 event in δx 
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Example of a Poisson Process

� Bubbles in a bubble chamber track
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Prob of 0 bubbles in 
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Gaussian (Normal) distribution

� Gaussian = famous “bell-shaped curve” 

– Describes IQ scores, number of ants in a colony of a given species, wear profile on 

old stone stairs...

All these are cases where:

– deviation from norm is equally probable in either direction 

– Variable is continuous (or large enough integer to look continuous - far from the 

“wall” at zero)

� Real-valued PDF:  f(x) → - ∞ < x < + ∞
N(x;µ,σ)= (1/sqrt[2πσ2]) exp[-(x-µ)2/2σ2 ]

� 2 independent parameters: µ , σ (central location and width)

N(0,1), N(0,2), N(0,3)
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� Properties:

Symmetrical, mode at  µ , 

median=mean=mode, Inflection points at  ±σ
Cumulative distribution :

∫
-∞

x n(x;0,1)dx = erf(x)
Area (probability of observing event) within: 

± 1σ = 0.683     = erf(1)-erf(-1)
± 2σ = 0.955     = erf(2)-erf(-2)

For larger σ, bell shaped curve becomes 

wider and lower (since area =1 for any σ)
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Binomial, Poisson, Gaussian

Shown above: 

• Binomial for 100 trials, p=0.01, 0.05, 0.10, 0.25 (solid)

• Poisson for µ = 1, 5, 10, 25 (dashed line)

Poisson is broader and has peak slightly below µ
Both become similar to Gaussian N(µ, σ=√µ) as mean value gets larger

(Gaussian would be indistinguishable from Poisson for mean=25 on this plot)

Binomial and Poisson distributions
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Why the Normal Distribution is important...

� Central Limit Theorem:

Given N independent random variables xk, each with mean µk and variance σk

specified (but not details of individual PDF’s), the random variable z = Σ xk
has 

µZ = Σ µk and σZ
2 = Σ σk

2 , 

and for N → ∞, its PDF will be Gaussian, i.e. p(z)=N(µZ , σZ )

(Σ xk - Σ µk ) / sqrt[Σ σk
2 ] = n(x;0,1)

� Applies to: any situation with real-valued result where several independent

processes add: additive errors.    Examples: 

– Random walk of 100 steps. Each step is independent of others, any probability 

distribution for direction and length of each step (but µ, σ2 known).

– To make a simple Gaussian random number generator, just take sum of 12 standard 

uniformly distributed numbers:

x=Σ (u
k
- 6);   x will be distributed ~ n(x;0,1)

(recall: u(0;1) has µ= 0.5, σ2= 1/12 )

� Parameters µ,σ are independent (and converse: if a random variable has µ,σ
independent, it is normal).

Given N random numbers xk drawn from a normal distribution,

the sample mean µ = (1/N)Σ xk

and sample variance s2 = Σ σk
2 / (N-1)

are independent statistics
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Applications to counting

� Errors in single counts

– CR counts are a Poisson process, so σ
k
2 =N,  σ

k
=√N

� Errors on histogram bins contents

– In/out of bin = binomial process, so σ
k
2 =Np

k
(1-p

k
)

where p
k
= n

k
/N   

– Poisson approximation σ
k
=√n

k
is valid for n

k
> 10

� Significance of deviations from expectation
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Example: counting statistics and limits of detectability 

� How can we tell if a significant signal exists in the presence of background? 

NT = observed counts in time T

NB = background counts (separate experiment)

Then NT = NS + NB where NS = true signal counts

Assume T is long enough so all counts are “not small” (>>5)

Then expect N’s to be Poisson distributed (~ Gaussian-distributed), with σ =√ N

NS = NT - NB , so  σ S
2 = σ T

2 + σ B
2

– Suppose there is no real activity present, NS actually = 0 

σ T
2 = σ B

2 so  σ S
2 = 2 σ B

2 or σ S = √(2NB)

So we expect NS to be drawn from a Gaussian distribution N(0,√(2NB))

� Define H
0
= hypothesis that there is no activity present, all we are seeing 

is background

– Reject H0 if NT > NC = “cut level” for decision

How do we define N
C
?

Significance of deviations from expectation
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Significance of deviations from expectation

� Decide on a significance level = acceptable probability for being fooled 

by a random fluctuation

If we want, eg,  <5% probability of false positive result, we must set NC at 

the 5% tail of the Gaussian distribution.

� Example: H
0
= "no radioactive decays from this sample"

No-sample run gives 6 counts, assumed to be background

σ S = √(2NB) = 3.5

Therefore if H0 = true, and we count the  sample many times,

we would get fewer than: 

3.5 counts 68% of the time

7 counts 95% of the time

10.5 counts 99.7% of the time

Another way to say it:

we can reject H0 at the 95% 

confidence level if we observe N>7

1000 experiments with mean count 0
and standard deviation 3.5
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"Accidentals"

� Accidentals = Chance coincidences due to uncorrelated noise 

pulses which happen to arrive within the logic gate's time 

window

� If noise is truly random, then the fraction of each second 

occupied by available coincidence windows is

f
OCCUPIED

= r
1
* t

W

where r
1
=singles rate of counter 1, Hz; t

w
=window width, sec

(This is equal to the probability that a randomly selected time lies 

within a coincidence window)

� The rate of 2-fold accidentals will thus be

r
12
=r

2
*f

OCCUPIED
= r

2
*r

1
* t

W
(for r1,2*t<<1)

• Counter 1's pulse arrives

(Average spacing is 1/r1 sec)

• Logic gate opens a window (note delay)

• Counter 2's pulse arrives

Average spacing is 1/r2 sec

tw


