

Gravitational Waves and LIGO

Ray Frey, University of Oregon

1. GW Physics and Astrophysics

- 2. How to detect GWs The experimental challenge
- 3. Prospects

General Relativity

Some predictions:

- Gravity influences both mass and energy
 - e.g. bending of light in regions with gravitational field
 - * 1919 Eddington \rightarrow Gravitational lensing
- Many small deviations from Newtonian gravity in "weak" fields
 - Gravitational "redshift" (e.g. clocks on satellites are faster)
 - Perihelion advance of mercury
 - Global Positioning System would not work without GR corrections
- "Strong" field effects
 - Black holes; $R_s = 2GM/c^2$
- Spacetime structure of universe evolution of spacetime from Big Bang
- And gravitational radiation (gravitational waves)
 "Ripples in spacetime"
 - Propagation at c; two polarization states (+,x)

Evidence for Gravitational Waves

GW Science

- Goals:
 - Establish GW detection test
 General Relativity
 - Use GW as an astrophysical tool
- Unexplored territory!
 - GW revolution like radio astronomy?

GW Sources

- GW emission requires time varying quadrupole moment of mass distribution
- Strain estimate:

$$h \sim \left(\frac{GM}{c^2}\right) \left(\frac{v^2}{c^2}\right) \frac{1}{r}$$

For $1M_{\odot} \Rightarrow R_s = 2GM_{\odot}/c^2 = 3$ km If $v \approx c$, then at r = 15 Mpc:

$$h \sim 3 \times 10^{-23}$$

GW Interferometer Principle

Interferometer sensitivity

Strain due to space-time warpage: h = δL / L »For h ≈10⁻²¹ and L ≈ 1 km, then δ L ≈ 10⁻¹⁸ m
Change in light travel time (one bounce): δt = 2 δL/c = 2hL/c
Gives change in phase δΦ = 2πf δt = 4πLh / λ »L ≈ 100 × 1 km »λ = 1 μm »Let h ≈10⁻²¹ ⇒δΦ ≈ 10⁻⁹ rad

•δΦ ≈ 10⁻⁷ is commonplace
•Need to improve by factor 100; and in a large system

Interferometer parameters

- Long baseline ~1 km
- Cavity storage time ~1 ms (~100 bounces)
- High laser power
 - Power recycling (x30)
 - Few watts in; few kW in arms

How small is 10⁻¹⁸ m?

÷10,000 (÷100 One meter, about 40 inches

Human hair, about 100 microns

Wavelength of light, about 1 micron

÷10,000

Atomic diameter, 10⁻¹⁰ meter

÷100,000 🔹

 $\div 1,000$

Nuclear diameter, 10⁻¹⁵ meter

LIGO sensitivity, 10⁻¹⁸ meter

Experimental features

- Extensive use of servo loops
- Null measurements
 - dark fringe kept centered on photodiode
- RF heterodyne measurement of $\delta\Phi$
- Power recycling
- Isolation and monitoring of environment

LIGO length control system

LIGO

What Limits Sensitivity of Interferometers?

- Seismic noise & vibration
 limit at low frequencies
- Thermal noise of
 suspensions and test masses
- Quantum nature of light (Shot Noise) limits at high frequencies
- Limitations of facilities much lower (LIGO)

Best Strain Sensitivities for the LIGO Interferometers Comparisons among S1, S2, S3 LIGO-G030548-02-E

Inspiral sensitivity

LIGO sensitivity to coalescing binaries

Astrophysical signal types

- Compact binary inspiral: "chirps"
 - NS-NS waveforms are well described
 - **BH-BH** need better waveforms
 - search technique: matched templates

- Supernovae / GRBs:
 - "unmodelled" search
 - triggered search: coincidence with photon or neutrino detections
- Pulsars in our galaxy: *"periodic"* •

"bursts"

- observe known neutron stars (frequency, doppler shift)
- all sky search (computing challenge)
- r-modes
- **Cosmological Signals**

"stochastic background"

Gamma Ray Bursts

An International Network of Interferometers

Status of detectors

- LIGO: 2 sites, L=4km
 - Science running interleaved with planned improvements
 - S1 analyses and papers completed (upper limits)
 - S2 and S3 analyses being completed
- VIRGO: L=3km
 - Commissioning full interferometer
 - Advanced suspensions
- GEO: L=0.6km
 - Run with LIGO S1, S3, ... (improvements interleaved)
 - Advanced suspensions
- TAMA: L=0.3km
 - Run with LIGO S2, S3, ...
- AIGO: R&D facility

June 16, 2004

R. Frey QNet

Laser Interferometer Gravitational-wave Observatory (LIGO)

Vacuum equipment – corner station

Optic

Substrates: SiO₂ 25 cm Diameter, 10 cm thick Homogeneity < 5 x 10⁻⁷ Internal mode Q's > 2 x 10⁶

Polishing Surface uniformity < 1 nm rms Radii of curvature matched < 3%

> Coating Scatter < 50 ppm Absorption < 2 ppm Uniformity <10⁻³

Core Optics Suspension and Control

Optics suspended as simple pendulums

Shadow sensors & coil actuators provide damping and control forces

Mirror is balanced on 30 micron diameter wire to 1/100th degree of arc June 16, 2004 R. Frey

Science Running

Active Seismic Isolation

Hydraulic External Pre-Isolator (HEPI)

LIGO

R. Frey

QNet

The need for improved sensitivity

 Probe the Virgo cluster and beyond

 Sample cosmologically located sources (eg GRBs) with good statistics

 Advanced LIGO will increase observed space by 10⁴

solar mass stars vs distance in light years : Thu Aug 5 17:49:12 1999

DATA: Cosmology of the Local Group G.Lake Astrophysical Quantities C.W. Allen

Advanced LIGO *improved subsystems*

Multiple Suspensions

Active Seismic

Date: 10/25/2001
Time: 13:59:18
Wavelength: 1.064 um
Pupil: 100.0 %
PV: 81.6271 nm
RMS: 13.2016 nm

X Center: 172.00 Y Center: 145.00 Radius: 163.00 pix Terms: None Filters: None Masks:

Higher Power Laser

LISA: Interferometers in space

 Can probe lowfrequency sources

- First GW discoveries ??
- Advanced LIGO
 - Plan: Start shutdown for installation ~2007
- Maturation of the field of GW astronomy ??
- LISA

Summary

- Goals:
 - Establish gravitational wave detection test General Relativity
 - Use GW as an astrophysical tool
- New generation of ground-based GW interferometric detectors turning on well
 - approaching design sensitivity
 - Impressive technological achievement
- Science Running has started
 - GW physics and astrophysics
 - Capable now of seeing sources outside our local group of galaxies
- Major upgrades planned

