Gravitational Waves and LIGO

Ray Frey, University of Oregon

1. GW Physics and Astrophysics
2. How to detect GWs – The experimental challenge
3. Prospects
Some predictions:

- Gravity influences both mass and energy
 - *e.g.* bending of light in regions with gravitational field
 - 1919 Eddington → Gravitational lensing
- Many small deviations from Newtonian gravity in “weak” fields
 - Gravitational “redshift” (*e.g.* clocks on satellites are faster)
 - Perihelion advance of mercury
 - Global Positioning System would not work without GR corrections
- “Strong” field effects
 - Black holes; \(R_s = \frac{2GM}{c^2} \)
- Spacetime structure of universe – evolution of spacetime from Big Bang
- And gravitational radiation (gravitational waves)
 - “Ripples in spacetime”
 - Propagation at c; two polarization states (+,x)
Evidence for Gravitational Waves

PSR 1913+16 Binary n-star system

- Pulsar period observed over 25 years
 - Taylor and Hulse

Cumulative shift of periastron time

• Goals:
 ▪ Establish GW detection – test General Relativity
 ▪ Use GW as an astrophysical tool
• Unexplored territory!
 ▪ GW revolution like radio astronomy?
GW Sources

- GW emission requires time varying quadrupole moment of mass distribution

- Strain estimate:

\[h \sim \left(\frac{GM}{c^2} \right) \left(\frac{v^2}{c^2} \right) \frac{1}{r} \]

For \(1M_\odot \Rightarrow R_s = 2GM_\odot/c^2 = 3 \text{ km} \)

If \(v \approx c \), then at \(r = 15 \text{ Mpc} \):

\[h \sim 3 \times 10^{-21} \]
GW Interferometer Principle
Interferometer sensitivity

- **Strain due to space-time warpage:** \(h = \frac{\delta L}{L} \)

 » For \(h \approx 10^{-21} \) and \(L \approx 1 \text{ km} \), then \(\delta L \approx 10^{-18} \text{ m} \)

- **Change in light travel time (one bounce):** \(\delta t = 2 \frac{\delta L}{c} = 2hL/c \)

- **Gives change in phase:** \(\delta \Phi = 2\pi f \delta t = \frac{4\pi Lh}{\lambda} \)

 » \(L \approx 100 \times 1 \text{ km} \)

 » \(\lambda = 1 \mu \text{m} \)

 » Let \(h \approx 10^{-21} \)

\[\Rightarrow \delta \Phi \approx 10^{-9} \text{ rad} \]

- \(\delta \Phi \approx 10^{-7} \) is commonplace

- **Need to improve by factor 100; and in a large system**
Interferometer parameters

- Long baseline ~ 1 km
- Cavity storage time ~ 1 ms (~ 100 bounces)
- High laser power
 - Power recycling (x30)
 - Few watts in; few kW in arms
How small is 10^{-18} m?

- $\div 10,000$: Human hair, about 100 microns
- $\div 100$: Wavelength of light, about 1 micron
- $\div 10,000$: Atomic diameter, 10^{-10} meter
- $\div 100,000$: Nuclear diameter, 10^{-15} meter
- $\div 1,000$: LIGO sensitivity, 10^{-18} meter
Experimental features

- Extensive use of servo loops
- Null measurements
 - dark fringe kept centered on photodiode
- RF heterodyne measurement of $\delta \Phi$
- Power recycling
- Isolation and monitoring of environment
What Limits Sensitivity of Interferometers?

- Seismic noise & vibration limit at low frequencies
- Thermal noise of suspensions and test masses
- Quantum nature of light (Shot Noise) limits at high frequencies
- Limitations of facilities much lower (LIGO)
Best Strain Sensitivities for the LIGO Interferometers

Comparisons among S1, S2, S3

LIGO-G030548-02-E
Inspiral sensitivity

Compact binary mergers

LIGO sensitivity to coalescing binaries
Astrophysical signal types

- Compact binary inspiral: "chirps"
 - NS-NS waveforms are well described
 - BH-BH need better waveforms
 - search technique: matched templates

- Supernovae / GRBs: "bursts"
 - "unmodelled" search
 - triggered search: coincidence with photon or neutrino detections

- Pulsars in our galaxy: "periodic"
 - observe known neutron stars (frequency, doppler shift)
 - all sky search (computing challenge)
 - r-modes

- Cosmological Signals "stochastic background"

June 16, 2004
R. Frey
QNet
Gamma Ray Bursts

GRB030329
Gamma-ray lightcurve from the HETE-2 spacecraft

Light curve (Fregate_B) that triggered H2652
Trigger_20030329_113714.70 = 1.31558670.8 = 732973047.70

Source: GSFC

June 16, 2004
R. Frey
An International Network of Interferometers

Simultaneously detect signal (within msec)

- **LIGO**
- **GEO**
- **Virgo**
- **TAMA**

- detection confidence
- locate the sources
- decompose the polarization of gravitational waves
Status of detectors

• **LIGO:** 2 sites, $L = 4\text{km}$
 - Science running interleaved with planned improvements
 - S1 analyses and papers completed (upper limits)
 - S2 and S3 analyses being completed

• **VIRGO:** $L = 3\text{km}$
 - Commissioning full interferometer
 - Advanced suspensions

• **GEO:** $L = 0.6\text{km}$
 - Run with LIGO S1, S3, … (improvements interleaved)
 - Advanced suspensions

• **TAMA:** $L = 0.3\text{km}$
 - Run with LIGO S2, S3, …

• **AIGO:** R&D facility
Laser Interferometer Gravitational-wave Observatory (LIGO)

Hanford Observatory

Livingston Observatory

3002 km (Ljc = 10 ms)
Vacuum equipment – corner station
Optic

Substrates: SiO$_2$
25 cm Diameter, 10 cm thick
Homogeneity < 5 x 10$^{-7}$
Internal mode Q’s > 2 x 106

Polishing
Surface uniformity < 1 nm rms
Radii of curvature matched < 3%

Coating
Scatter < 50 ppm
Absorption < 2 ppm
Uniformity <10$^{-3}$
Core Optics Suspension and Control

Shadow sensors & coil actuators provide damping and control forces.

Mirror is balanced on 30 micron diameter wire to 1/100th degree of arc.
Science Running

Hanford control room
Active Seismic Isolation

Hydraulic External Pre-Isolator (HEPI)

- Offload Springs
- Crossbeam
- Hydraulic Actuator (Horizontal)
- Hydraulic Lines & Valves
- Pier
- BSC
- HAM

R. Frey QNet 23
The need for improved sensitivity

• Probe the Virgo cluster and beyond

• Sample cosmologically located sources (eg GRBs) with good statistics

• Advanced LIGO will increase observed space by 10^4
Advanced LIGO
improved subsystems

Multiple Suspensions
Active Seismic

Sapphire Optics

Higher Power Laser

Date: 10/25/2001
X Center: 172.00

Time: 13:59:18
Y Center: 145.00

Wavelength: 1.064 um
Radius: 163.00 pix

Pupil: 100.0 %
Terms: None

PV: 81.6271 nm
Filters: None

RMS: 13.2016 nm
Masks:
LISA: Interferometers in space

- Can probe low-frequency sources
Prospects

• First GW discoveries ??

• Advanced LIGO
 - Plan: Start shutdown for installation ~2007

• Maturation of the field of GW astronomy ??

• LISA
Summary

• Goals:
 ▪ Establish gravitational wave detection – test General Relativity
 ▪ Use GW as an astrophysical tool
• New generation of ground-based GW interferometric detectors turning on well
 ▪ approaching design sensitivity
 ▪ Impressive technological achievement
• Science Running has started
 ▪ GW physics and astrophysics
 ▪ Capable now of seeing sources outside our local group of galaxies
• Major upgrades planned