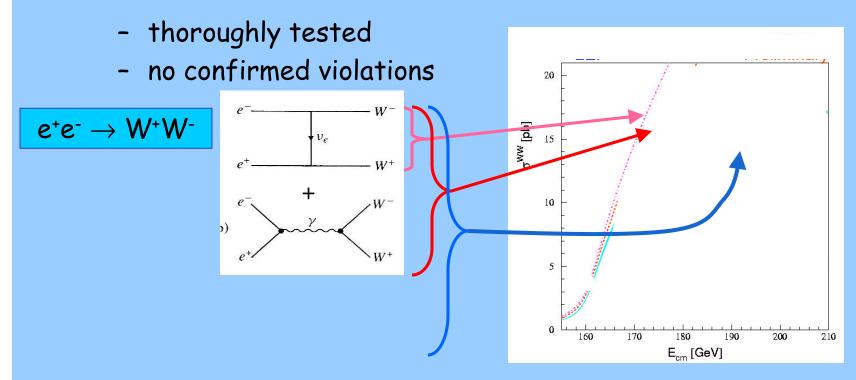

Particles, Mysteries, and Linear Colliders

Jim Brau QuarkNet Univ. of Oregon June 20, 2003

Particles and Forces



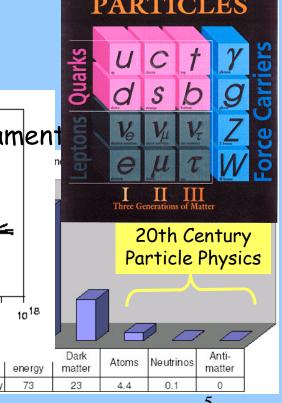
Particles and Forces

Particles

- Particle Physics left the 20th Century with a triumphant model of the fundamental particles and interactions - the Standard Model
 - quarks, leptons, gauge bosons mediating gauge interactions

Mysteries

 We enter the 21st Century with mysteries of monumental significance in particle physics:


The top quark mass

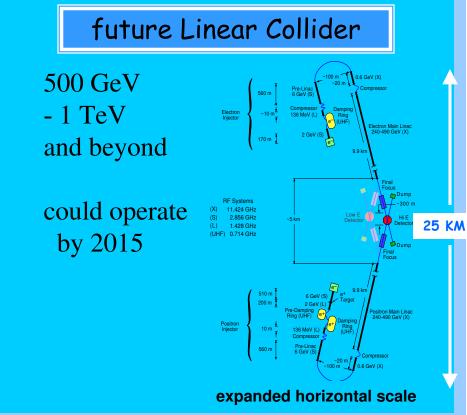
- Ultimate unification of the interactions?

- Hidden spacetime dimensions?

· What is da

Electroweak Forces

10 16


Linear Colliders

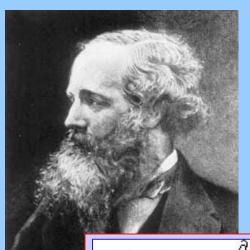
 The electron-positron Linear Collider is a critical tool in our probe of these secrets of Nature

The First Linear Collider

SLAC Linear Collider (SLC) built on existing SLAC linac Operated 1989-98

Electroweak Symmetry Breaking

- One of the major mysteries in particle physics today is the origin of Electroweak Symmetry Breaking
 - Weak nuclear force and the electromagnetic force unified
 - $SU(2) \times U(1)_y$ with <u>massless</u> gauge fields
 - Why is this symmetry hidden?
 - The physical bosons are not all <u>massless</u>
 - $M_{y} = 0$ $M_{W} = 80.426 \pm 0.034 \, GeV/c^{2}$ $M_{Z} = 91.188 \pm 0.002 \, GeV/c^{2}$

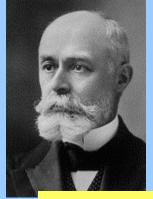

GeV is the standard unit of energy in particle physics Giga-electron Volt = 1,000,000,000 eV

- The full understanding of this mystery appears to promise deep understanding of fundamental physics
 - the origin of mass
 - supersymmetry and possibly the origin of dark matter
 - additional unification (strong force, gravity) and possibly hidden space-time dimensions

7

Electromagnetism and Radioactivity

 Maxwell unified Electricity and Magnetism with his famous equations (1873)


$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

$$\nabla \cdot \mathbf{E} = \rho/\epsilon_0$$

$$\nabla \cdot \mathbf{B} = 0$$

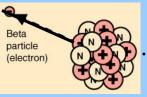
- Matter spontaneously emits penetrating radiation
 - Becquerel uranium emissions in 1896
 - The Curies find radium emissions by 1898

particle (electron)

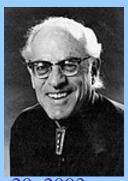
Could this new interaction (the weak force) be related to E&M?

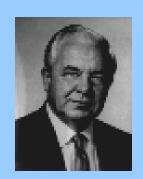
Advancing understanding of Beta Decay

energy


- Pauli realizes there must be a neutral invisible particle accompanying the beta particle:
 - the neutrino
- Fermi develops a theory of beta decay (1934)

$$n \rightarrow p e^{-} \overline{v_e}$$


 1955 - Neutrino discovered by Reines and Cowan - Savannah River Reactor, SC



neutrino

Status of EM and Weak Theory in 1960

Quantum Electrodynamics (QED)

- Dirac introduced theory of electron 1926
- Through the pioneering theoretical work of Feynman, Schwinger, Tomonga, and others, a theory of electrons and photons was worked out with precise predictive power
- example: magnetic dipole of the electron [(g-2)/2] $\mu = g$ (eh/2mc) 5
 - current values of electron (q-2)/2

theory: 0.5 (α/π) - 0.32848 (α/π)² + 1.19 (α/π)³ +.. = (115965230 \pm 10) \times 10⁻¹¹

experiment = $(115965218.7 \pm 0.4) \times 10^{-11}$

Status of EM and Weak Theory in 1960

Weak Interaction Theory

Fermi's 1934 pointlike, four-fermion interaction theory

$$M = GJ_{\text{baryon}}^{\text{weak}}J_{\text{lepton}}^{\text{weak}} = G(\bar{\psi}_p O\psi_n)(\bar{\psi}_e O\psi_v)$$
 V-A

$$W = \frac{2\pi}{\hbar} G^2 |M|^2 \frac{dN}{dE_0}$$

- Theory <u>fails at higher energy</u>, since rate increases with energy, and therefore will violate the "unitarity limit"
 - Speculation on <u>heavy mediating bosons</u> but no theoretical guidance on what to expect

The New Symmetry Emerges

VOLUME 19, NUMBER 21

PHYSICAL REVIEW LETTERS

20 NOVEMBER 1967

A MODEL OF LEPTONS*

Steven Weinberg†

Leptons interact only with photons, and with the intermediate bosons that presumably mediate weak interactions. What could be more natural than to unite¹ these spin-one bosons into a multiplet of gauge fields? Standing in the way of this synthesis are the obvious differences in the masses of the photon and intermediate meson, and in their couplings. We might hope to understand these differences ightly larger than that (0.23%) obtained from ninance model of Ref. 2. This seems to be in the other case of the ratio $\Gamma(\eta \to \pi^+\pi^-\gamma)/$

culated in Refs. 12 and 14. Brown and P. Singer, Phys

IS*

sics Department, pridge, Massachusetts 57)

a right-handed singlet

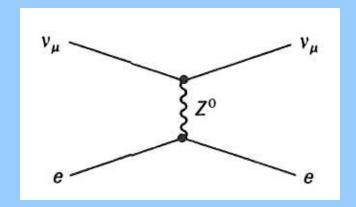
 $R = \left[\frac{1}{2}(1-\gamma_5)\right]e.$

Electroweak Unification

 The <u>massless</u> gauge fields are mixed by the Higgs mechanism into the massive gauge bosons

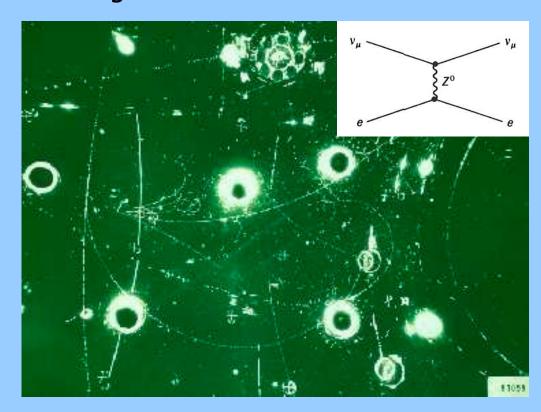
Massless gauge bosons in symmetry limit
$$\begin{pmatrix} b \\ \omega^-\omega^0 & \omega^+ \end{pmatrix}$$
 Physical bosons $\begin{pmatrix} Complex spin & 0 \\ Higgs & doublet \end{pmatrix}$ $\begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}$ Electroweak symmetry breaking

- Weinberg realized that the vector field responsible for the EM force
 - (the photon)

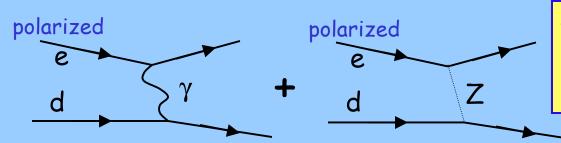

and the vector fields responsible for the Weak force

- (yet undiscovered W^+ and W^-)
- could be unified if another vector field, mediated by a heavy neutral boson (Z), were to exist
- This same notion occurred to Salam

Electroweak Unification


- There remained a phenomenological problem:
 - where were the effects of the Z⁰?
- · These do not appear so clearly in Nature
 - they are small effects in the atomic electron energy level
- · One has to look for them in high energy experiments

Neutral Currents Discovered!


- 1973 giant bubble chamber Gargamelle at CERN
 - 12 cubic meters
 of heavy liquid

- · Muon neutrino beam
- Electron recoil
- Nothing else
- Neutral Current
 Discovered

Confirmation of Neutral Currents

- Weinberg-Salam Model predicts there should be some parity violation in polarized electron scattering
 - The dominant exchange is the photon (L/R symmetric)
 - A small addition of the weak neutral current exchange leads to an expected asymmetry of $\,\sim 10^{-4}\,$ between the scattering of left and right-handed electrons

Z exchange violates parity

 $g_R \neq g_L$ An asymmetry of 10^{-4}

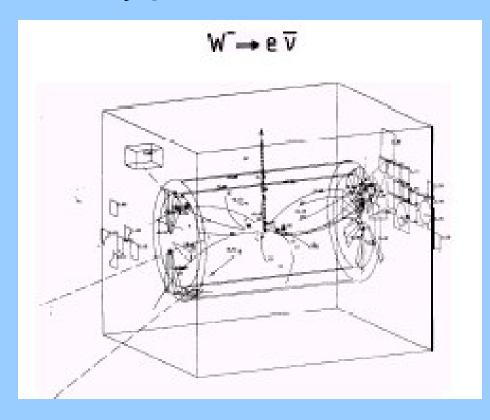
- This was observed by Prescott et al. at SLAC in 1978, confirming the theory, and providing the first accurate measurement of the weak mixing angle

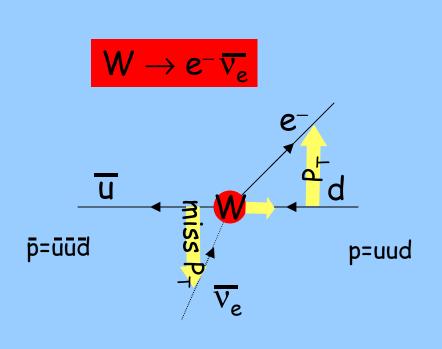
$$\sin^2 \theta_W = 0.22 \pm 0.02$$

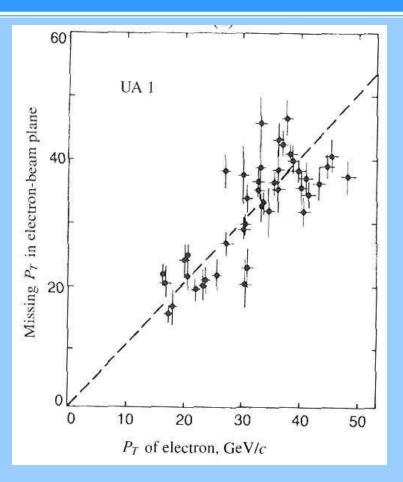
Discovery of the W and Z

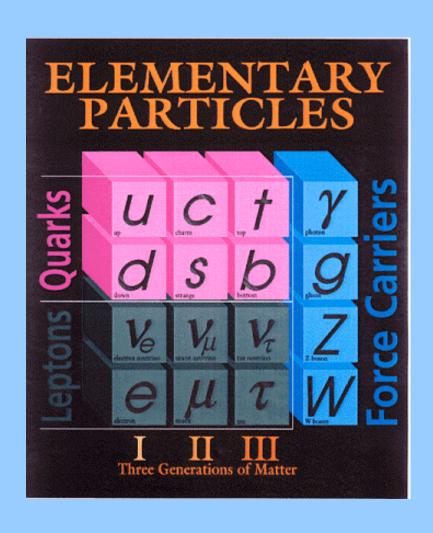
 1981 - antiprotons were stored in the CERN SPS ring and brought into collision

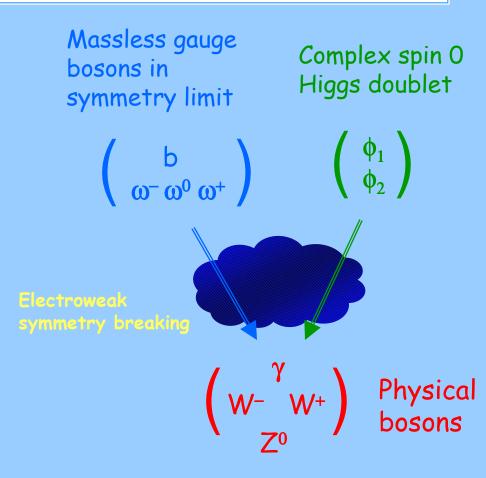
with protons



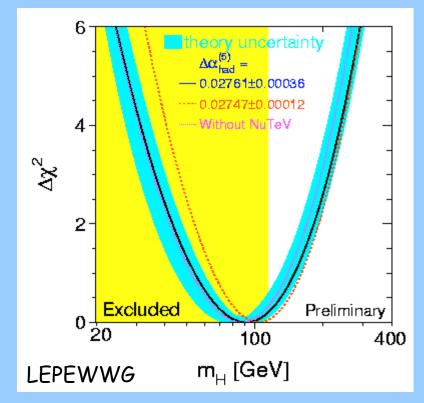

Discovery of the W and Z

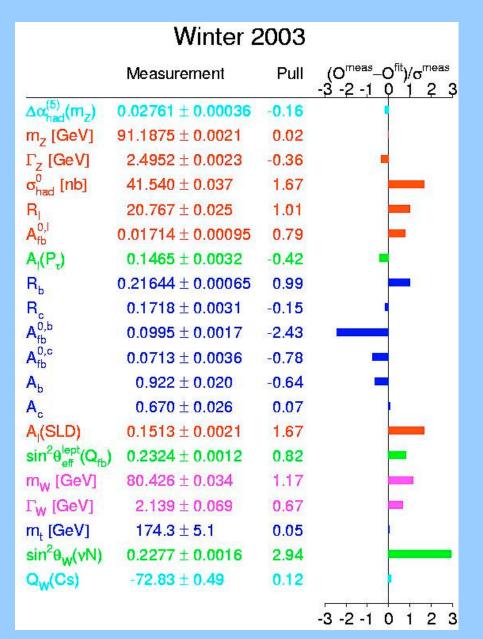

· 1981 UA1




Discovery of the W and Z

The Standard Model




The Higgs Boson

- The quantum(a) of the Higgs Mechanism is(are)
 the Higgs Boson or Bosons
 - Minimal model one complex doublet \Rightarrow 4 fields
 - 3 "eaten" by W+, W-, Z to give mass
 - 1 left as physical Higgs
- This spontaneously broken local gauge theory is renormalizable - t'Hooft (1971)
- · The Higgs boson properties
 - Mass < ~ 800 GeV/c² (unitarity arguments)
 - Strength of Higgs coupling increases with mass
 - fermions: $g_{ffh} = m_f / v$ v = 246 GeV
 - gauge boson: $g_{wwh} = 2 m_Z^2/v$

Standard Model Fit

• $M_H = 91^{+58}_{-37} \text{ GeV/c}^2$

History of Anticipated Particles

Positron 1932 - Dirac theory of the electron

Pi meson 1947 - Yukawa's theory of strong interaction

Neutrino 1955 - missing energy in beta decay

Quark 1968 - patterns of observed particles

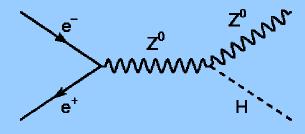
Charmed quark 1974 - absence of flavor changing neutral currents

Bottom quark 1977 - Kobayashi-Maskawa theory of CP violation

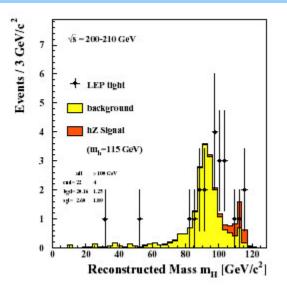
W boson 1983 - Weinberg-Salam electroweak theory

Z boson 1984 - " "

Top quark


1997 - Expected once Bottom was discovered

Mass predicted by precision Z⁰ measurements


Higgs boson ????? - Electroweak theory and experiments

The Search for the Higgs Boson

- LEP II (1996-2000)
 - $M_H > 114 \text{ GeV/c}^2 (95\% \text{ conf.})$

The Search for the Higgs Boson

Tevatron at Fermilab

- Proton/anti-proton collisions at E_{cm}=2000 GeV
- Collecting data now
 - discovery possible by ~2008?

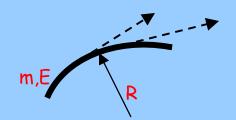
LHC at CERN

- Proton/proton collisions at E_{cm}=14,000 GeV
- Begins operation ~2007

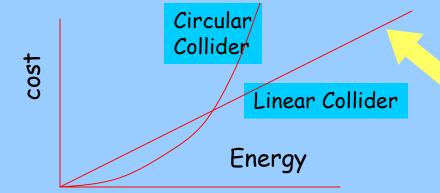
The Next Linear Collider

- Acceleration of electrons in a <u>circular</u> accelerator is plagued by Nature's resistance to acceleration
 - Synchrotron radiation
 - $\Delta E = 4\pi/3 \left(e^2\beta^3\gamma^4 / R\right)$ per turn (recall $\gamma = E/m$, so $\Delta E \sim E^4/m^4$)
 - eg. LEP2 $\Delta E = 4 \text{ GeV}$ Power ~ 20 MW

For accethan

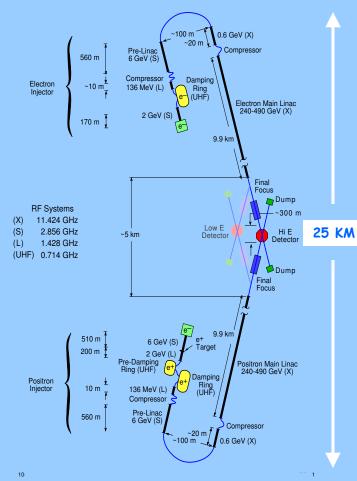

nergy it is preferable to r accelerator, rather

positrons



Cost Advantage of Linear Colliders

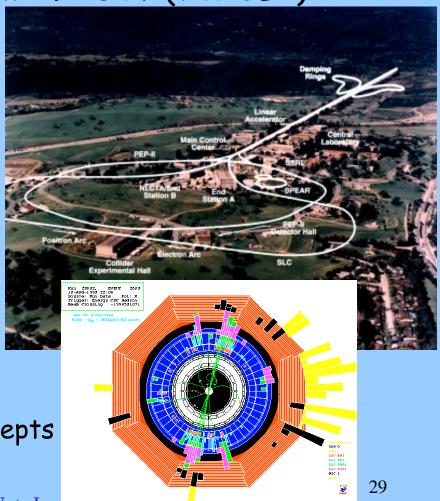
- Synchrotron radiation
 - $\Delta E \sim (E^4/m^4 R)$


- Therefore
 - Cost (circular) $\sim a R + b \Delta E \sim a R + b (E^4/m^4 R)$
 - Optimization R ~ E^2 \Rightarrow Cost ~ c E^2
 - Cost (linear) ~ a'L, where L ~ E

At high energy, linear collider is more cost effective

The Linear Collider

- A plan for a high-energy, highluminosity, electron-positron collider (international project)
 - $E_{cm} = 500 1000 GeV$
 - Length ~25 km
- Physics Motivation for the LC
 - Elucidate Electroweak Interaction
 - particular symmetry breaking
 - · This includes
 - Higgs bosons
 - supersymmetric particles
 - extra dimensions
- Construction could begin around 2009 following intensive pre-construction R&D with operation beginning around 2015


expanded horizontal scale

Warm X-band version

The First Linear Collider

 This concept was demonstrated at SLAC in a linear collider prototype operating at ~91 GeV (the SLC)

- SLC was built in the 80's within the existing SLAC linear accelerator
- Operated 1989-98
 - precision Z⁰ measurements
 - A_{LR} = 0.1513 \pm 0.0021 (SLD) asymmetry in Z^0 production with L and R electrons
 - established Linear Collider concepts

NLC Engineering

- · Power per beam
 - 6.6 MW cw (250 GW during pulse train of 266 nsec)
- Beam size at interaction
 - 245 nanometers x 3 nanometers

Stabilize

- Beam flux at interaction
 - 10^{12} MW/cm² cw (3 x 10^{13} GW/cm² during pulse train)
- · Current density
 - $-6.8 \times 10^{12} \text{ A/m}^2$
- Induced magnetic field (beam-beam)
 - >1000 Tes beam-beam induced bremsstrahlung "beamstrahlung"

Conclusion

The Linear Collider will be a powerful tool for studying Electroweak Symmetry Breaking and the Higgs Mechanism, as well as the other possible scenarios for TeV physics

Current status of Electroweak Precision measurements strongly suggests that the physics at the LC will be rich.

We can expect these studies to further our knowledge of fundamental physics in unanticipated ways

