Tracking Detectors

Nick Hadley Quarknet, July 10, 2003

Why Tracking detectors

- In a particular reaction, we want to know what the particles are and where they went.
- Often we see only decay products
 - J/ ψ -> μ^+ μ^- , J/ ψ lifetime $< 10^{-18}$ sec.
 - Doesn't travel very far, see only decay muons
 - 1974 discovery, Nobel prize

Kinematics

•
$$M^2 = E^2 - P^2$$

= $(E_1 + E_2)^2 - (P_1 + P_2)^2$

- Sets scale for how well you need to measure E and P, magnitude (E,P) and direction
- $E^2 = M^{2+}P^2$ if know type know M.

Tracking Detectors

- Tracking detectors measure charged particles
- For neutral particles need calorimeter
 See Greg's talk tomorrow
- Usually track in a magnetic field so can measure the momentum

Charged Particle in B Field

- Lorentz Force, $\mathbf{F} = \mathbf{q} \mathbf{v} \times \mathbf{B}$
- Particle with charge q moves in a helix in a B field of radius of curvature R and pitch angel λ
- $P \cos \lambda = 0.3 q B R$
- Units B in tesla, R in meters P in GeV/c
- From position can measure R and λ , B is known, calculate P

Gas Detectors

- Proportional wire chamber and drift chambers.
- General idea, particles go thru gas, electron ion pairs created along the track, drift electrons to wire, measure signal

More details

- Two sources of error in momentum measurement
 - Position accuracy of detector
 - Multiple scattering
- Gas detectors not much mass, small multiple scattering, but takes 30 eV to make an electron ion pair, low statistics, diffusion, resolution about 100 μ .

Details (cont)

- Trick is to chose the number of measurements and the magnetic field to do the physics you want to do
- Best geometry depends on the experiment
- Resolution improves with B, L²

Silicon Detectors

- Same idea except use silicon instead of gas.
- Energy to create electron-hole pair 1/10 that of gas
- Higher density, more multiple scattering
- Can make really small structures. Resolution < 10 μ

Performance of Belle Silicon Vertex Detector

Masashi Hazumi (Osaka University, Japan)

Outline

[1] Goal of Belle SVD[2] System Overview[3] Performance[4] Summary

September 11-15, 2000

Vertex 2000, Homestead, Michigan

Other

- Can also use scintillator
- Dzero (my experiment) has a scintillating fiber tracker
 - Fibers are about 1mm in diameter
 - Have 8 cylinders of fibers

Fibers&Ribbons

The schematic layout of a ribbon

Conclusions

- Track Detectors have resulted in four Nobel prizes
 - Cloud (Wilson), emulsion (Powell), bubble chambers (Glaser), gas detectors (Charpak) (also called wire chambers)
- Resolution gets worse (dp/p) as momentum gets bigger.
 - Calorimeters help for neutrals and at high energies (plug for Greg's talk)