PARTICLE PHYSICS AND COSMOLOGY

Jonathan Feng

UC Irvine

UCI QuarkNet

21 August 2003

CONNECTING THE VERY, VERY SMALL WITH THE REALLY, REALLY BIG

21 August 2003

UCI QuarkNet

Standard Model of Particle Physics

• c. 1970s

 Explains data down to length scales of 10⁻¹⁶ cm

Fermilab 95-759

Particle Physics – Experiment

High Energy Colliders

 $\frac{\Delta g_1}{2} \sim 10^{-8}$ g_1

 $\frac{\Delta g_2}{2} \sim 10^{-3}$ g_2

 $\frac{\Delta g_3}{2} \sim 10^{-2}$ g_{3}

Standard Model of Cosmology

• c. 2003

 Explains data up to length scales of 10²⁸ cm

Cosmology – Experiment

Satellites, telescopes

21 August 2003

UCI QuarkNet

Connections – Theory

Why do particle physicists care about cosmology?

Cosmology poses fundamental questions:

- What is dark matter?
- What is dark energy?
- Why is there more matter than anti-matter?

The standard model of particle physics is amazingly successful, but...

It's missing 96% of the universe, and we don't understand why the remaining 4% is still here.

Connections – Experiment

- Cosmology also provides tools to help answer these questions
 - Ultrahigh energy collisions now
 - Ultrahigh energies from the Big Bang

... for FREE !

- Drawbacks
 - "Experimental rates" are low need BIG detectors
 - Cosmological "experiments" were done a long time ago
 - Cosmological "experiments" are irreproducible

Cosmic Rays – Past

- 1935 Yukawa postulates the pion with mass ~ 100 MeV.
- 1937 Anderson discovers the "mesotron" in cosmic rays with mass ~ 100 MeV.
- 1941-45 WW II.

- 1946 Powell and Occhialini discover pions π^- (139 MeV) in cosmic rays. Mesotrons identified as muons μ^- (106 MeV).
- 1946 Rochester and Butler discover kaons K⁰ (494 MeV) in cosmic rays.
- 1948 First man-made pions π⁻ and π⁰ (134 MeV) produced at Berkeley 184-inch cyclotron.

Cosmic Rays – Present

- Neutrino masses and mixings discovered through cosmic rays at SuperKamiokande in 1998
- Man-made neutrino sources provide evidence for mixings at KamLAND in 2002

Cosmic Rays – Future

- Cosmic rays observed with energy E_{CR} ~ 10¹⁹ eV (~ major league fastball)
- For fixed target collisions, the center-of-mass energy is $E_{CM} = (2 E_{CR} m_p)^{1/2}$, so

 $E_{\rm CR}$ ~10¹⁹ eV $\rightarrow E_{\rm CM}$ ~100 TeV

Higher energies than any man-made collider

Cosmic Rays – Future

Dark Matter

Big Bang Nucleosynthesis

- What is the halo made of? Not atoms!
- As the universe cools, protons form nuclei. The number of protons determines the amount of light elements in the universe.
- All light elements agree: protons make up 4% of the universe's mass, whereas the required amount of halo matter is 29%. The remaining 25% is *dark matter*.

21 August 2003

What is Dark Matter?

- Must be neutral, very long-lived, heavy.
- All known particles are easily eliminated.
- Dark matter is the best evidence that the standard model of particle physics is incomplete, and motivates many extensions.
- Some candidates:
 - WIMPs (e.g., neutralinos)
 - Axions

WIMPs

- Among the best candidates so far: weakly-interacting massive particles. These particles have weak interactions only.
- They are produced in the Big Bang, and interact via SM + SM ↔ WIMP + WIMP. As the universe expands, they become diluted, and eventually can't find each other – they "freeze-out." Their relic density is determined by their interaction strength.
- WIMPs are automatically left with the right amount to be dark matter.

WIMPs

- Universe cools, leaves a residue of dark matter with $\Omega_{\rm DM} \sim 0.1 \ (\sigma_{\rm Weak}/\sigma)$
- 13 Gyr later, Martha Stewart sells ImClone stock – the next day, stock plummets

Coincidences? Maybe, but worth investigation!

UCI QuarkNet

Supersymmetric WIMPs

	U(1)	SU(2)	Up-type	Down-type		
Spin	<i>M</i> ₁	<i>M</i> ₂	μ	μ	$m_{ ilde{ ext{v}}}$	<i>m</i> _{3/2}
2						G
						graviton
3/2		N				Ĝ
			aiinos: {χ⊧	$\models \chi_1, \chi_2, \chi_3, \gamma$	(4)	gravitino
1	γ	Ζ ⁰				
1/2	γ	Ź٥	$\tilde{H_u}$	$ ilde{H_d}$	ν	
	Photino	Zino	Higgsino	Higgsino		
0			H _u	H _d	ĩ	
					sneutrino	

Cold Dark Matter WIMP candidates: neutralino, sneutrino

WIMP Detection

CDMS in the Soudan mine ¹/₂ mile underground in Minnesota

Axions

- Axions are particles predicted in theories designed to explain why CP violation is so small.
- Axions interact with photons and are very light with masses of μeV to meV.
- However, they interact *extremely* weakly.

Axion Detection

21 August 2003

Dark Energy

 Cosmology → 70% of the mass of the universe is in dark energy (also known as the cosmological constant).

What is Dark Energy?

- Dark energy is the energy stored in a vacuum. From quantum mechanics, recall that an oscillator has energy $\omega (n \pm \frac{1}{2})$, where $\omega^2 = k^2 + m^2$; $\pm \omega/2$ is the vacuum energy. (Set $\hbar=1$.)
- In quantum field theory, we must add up vacuum energies for all wave numbers *k*. For each particle, we get

$$\pm \frac{1}{2} \int^{E} d^{3}k (k^{2} + m^{2})^{\frac{1}{2}} \sim \pm E^{4},$$

where *E* is the energy scale where the theory breaks down.

Expectations for Dark Energy

- We expect $E \sim M_{\text{Planck}} \sim 10^{19} \text{ GeV}$, or at least $E \sim M_{\text{weak}} \sim 100 \text{ GeV}$. But cosmology tells us $E \sim 10^{-3} \text{ eV}$! Independent contributions must cancel to incredible accuracy.
- Problems:
 - Why is Ω_{Λ} so small?
 - Why is Ω_{Λ} not zero?
 - Why is $\Omega_{\Lambda} \sim \Omega_{M}$?

• The cosmological constant problems are the most profound problems facing particle physics today. No reasonable solutions. (Anthropic principle?)

21 August 2003

UCI QuarkNet

Summary

- Cosmology provides fundamental questions...
 - What is dark matter?
 - What is dark energy?
 - Why is there matter and not anti-matter?
- ... and fundamental tools for finding the answers
 The universe is Nature's high energy collider
- The big and small are inextricably linked as particle physics and cosmology enter a golden era.

Ouroboros

