Particle physics experiments

- Particle physics experiments:
 - collide particles to
 - produce new particles
 - reveal their internal structure and laws of their interactions by observing regularities, measuring cross sections,...
 - colliding particles need to have high energy
 - to make objects of large mass
 - to resolve structure at small distances
 - to study structure of small objects:
 - need probe with short wavelength: use particles with high momentum to get short wavelength
 - remember de Broglie wavelength of a particle
 λ = h/p
 - in particle physics, mass-energy equivalence plays an important role; in collisions, kinetic energy converted into mass energy;
 - relation between kinetic energy K, total energy E and momentum p :

 $E = K + mc^2 = \sqrt{(pc)^2 + (mc^2)c^2}$

About Units

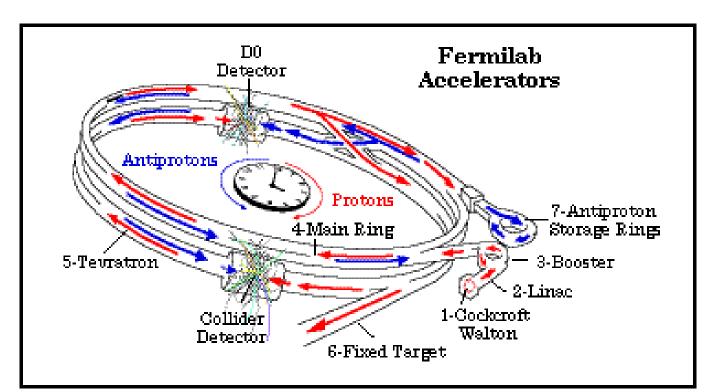
Energy - electron-volt

- 1 electron-volt = kinetic energy of an electron when moving through potential difference of 1 Volt;
 - ♦ 1 eV = 1.6 × 10⁻¹⁹ Joules = 2.1 × 10⁻⁶ W·s
 - 1 kW·hr = 3.6 × 10⁶ Joules = 2.25 × 10²⁵ eV
- mass eV/c²
 - ♦ 1 eV/c² = 1.78 × 10⁻³⁶ kg
 - electron mass = 0.511 MeV/c²
 - proton mass = 938 MeV/c²
 - professor's mass (80 kg) $\approx 4.5 \times 10^{37} \text{ eV/c}^2$

momentum - eV/c:

- ♦ 1 eV/c = 5.3 × 10⁻²⁸ kg m/s
- momentum of baseball at 80 mi/hr
 ≈ 5.29 kgm/s ≈ 9.9 × 10²⁷ eV/c

How to do a particle physics experiment


• Outline of experiment:

- get particles (e.g. protons, antiprotons,...)
- accelerate them
- throw them against each other
- observe and record what happens
- analyse and interpret the data
- ingredients needed:
 - particle source
 - accelerator and aiming device
 - detector
 - trigger (decide what to record)
 - recording device
 - many people to:
 - design, build, test, operate accelerator
 - design, build, test, calibrate, operate, and understand detector
 - analyse data
 - lots of money to pay for all of this

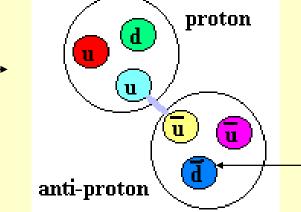
Accelerator

accelerators:

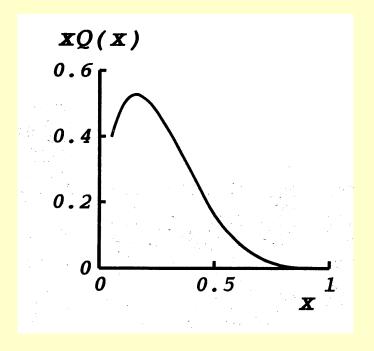
- use electric fields to accelerate particles, magnetic fields to steer and focus the beams
- synchrotron: particle beams kept in circular orbit by magnetic field; at every turn, particles "kicked" by electric field in accelerating station;
- fixed target operation: particle beam extracted from synchrotron, steered onto a target
- collider operation: accelerate bunches of protons and antiprotons moving in opposite direction in same ring; make them collide at certain places where detectors are installed

How to get high energy collisions

- Need E_{com} to be large enough to
 - allow high momentum transfer (probe small distances)
 - produce heavy objects (top quarks, Higgs boson)
 - e.g. top quark production: e⁺e⁻ → t⁺, qq → t⁺, gg → t⁺, ...
- Shoot particle beam on a target ("fixed target"):
 - $E_{com} = 2\sqrt{Emc^2} \sim 20 \text{ GeV for E} = 100 \text{ GeV},$ m = 1 GeV/c²



- Collide two particle beams ("collider :
 - ♦ E_{com} = 2E ~ 200 GeV for E = 100 GeV

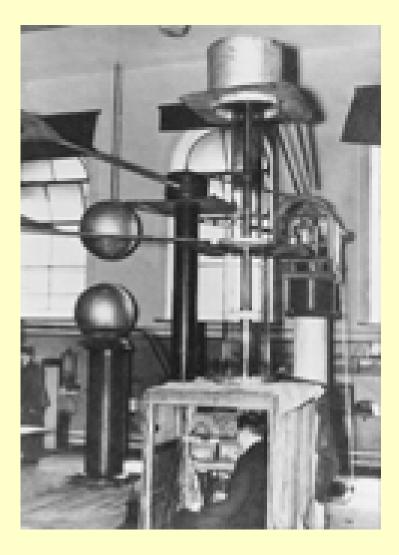


How to make qq collisions, cont'd

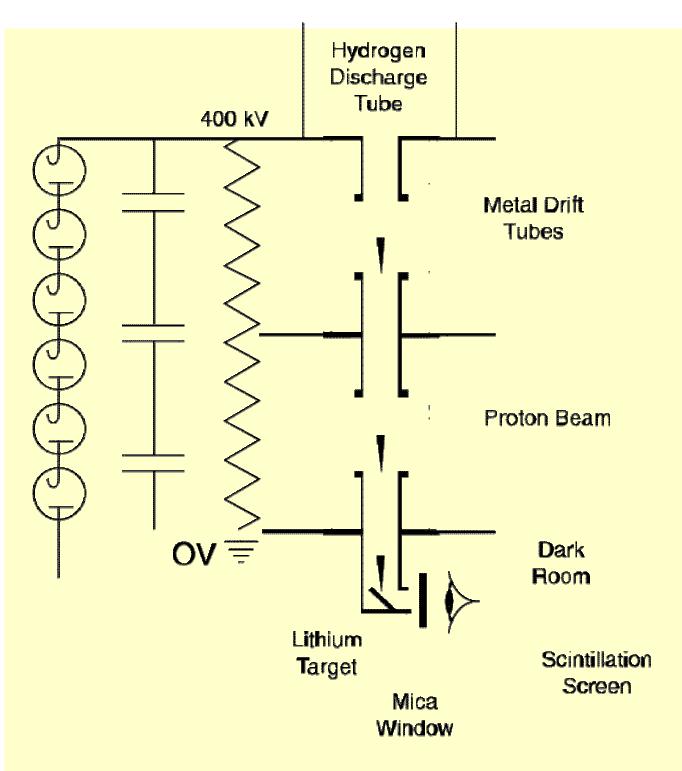
- Quarks are not found free in nature!
- But (anti)quarks are elements of (anti)protons.
- So, if we collide protons and anti-protons we should get some qq collisions.

 Proton structure functions give the probability that a single quark (or gluon) carries a fraction x of the proton momentum (which is 900 GeV/c at the Tevatron)

ACCELERATORS


- are devices to increase the energy of charged particles;
 - use magnetic fields to shape (focus and bend) the trajectory of the particles;
 - use electric fields for acceleration.
- types of accelerators:
 - electrostatic (DC) accelerators
 - Cockcroft-Walton accelerator (protons up to 2 MeV)
 - Van de Graaff accelerator (protons up to 10 MeV)
 - Tandem Van de Graaff accelerator (protons up to 20 MeV)
 - resonance accelerators
 - cyclotron (protons up to 25 MeV)
 - linear accelerators
 - electron linac: 100 MeV to 50 GeV
 - proton linac: up to 70 MeV
 - synchronous accelerators
 - synchrocyclotron (protons up to 750 MeV)
 - proton synchrotron (protons up to 900 GeV)
 - electron synchrotron (electrons from 50 MeV to 90 GeV)
 - storage ring accelerators (colliders)

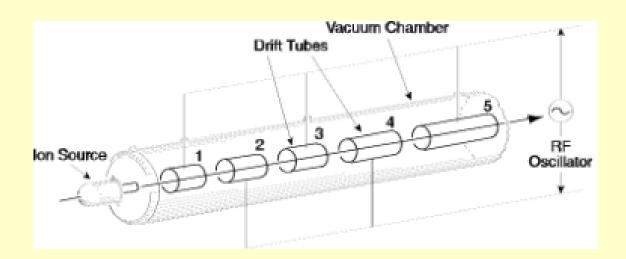
ACCELERATORS, cont'd


- electrostatic accelerators:
 - generate high voltage between two electrodes ⇒ charged particles move in electric field,

energy gain = charge times voltage drop;

 Cockcroft-Walton and Van de Graaff accelerators differ in method to achieve high voltage.

Cockcroft-Walton accelerator


FNAL Cockcroft Walton acc.

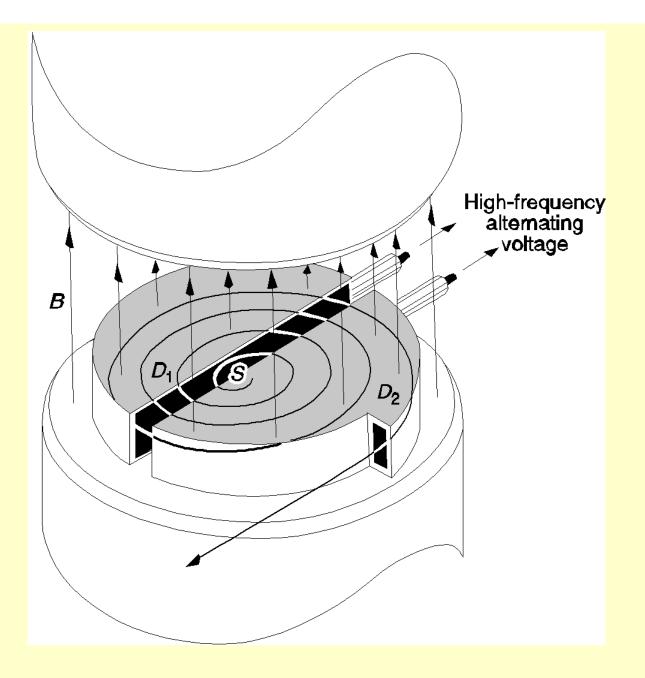
- The Cockcroft-Walton pre-accelerator provides the first stage of acceleration; hydrogen gas is ionized to create negative ions, each consisting of two electrons and one proton. T
- ions are accelerated by a positive voltage and reach an energy of 750,000 electron volts (750 keV). (about 30 times the energy of
- the electron beam in a television's picture tube.)

Proton Linac

- proton linac (drift tube accelerator):
 - cylindrical metal tubes (drift tubes) along axis of large vacuum tank
 - successive drift tubes connected to opposite terminals of AC voltage source
 - no electric field inside drift tube ⇒ while in drift tube, protons move with constant velocity
 - AC frequency such that protons always find accelerating field when reaching gap between drift tubes
 - length of drift tubes increases to keep drift time constant
 - for very high velocities, drift tubes nearly of same length (nearly no velocity increase when approaching speed of light)

FNAL Linac

- Next, the negative hydrogen ions enter a linear accelerator, approximately 500 feet long.
- Oscillating electric fields accelerate the negative hydrogen ions to 400 million electron volts (400 MeV).
- Before entering the third stage, the ions pass through a carbon foil, which removes the electrons, leaving only the positively charged protons.



CYCLOTRON

cyclotron

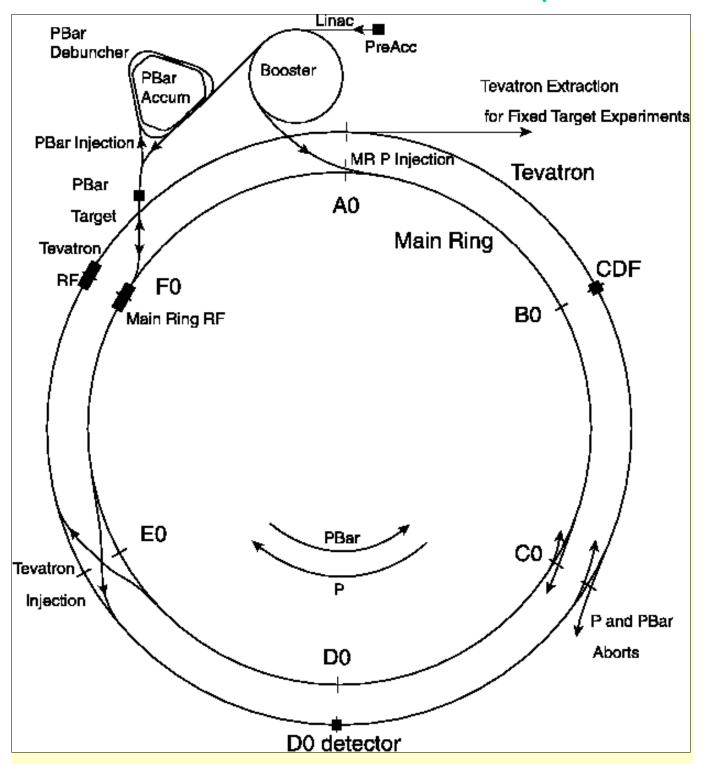
- consists of two hollow metal chambers called ("dees" for their shape, with open sides which are parallel, slightly apart from each other ("gap")
- dees connected to AC voltage source always one dee positive when other negative ⇒ electric field in gap between dees, but no electric field inside the dees;
- source of protons in center, everything in vacuum chamber;
- whole apparatus in magnetic field perpendicular to plane of dees;
- frequency of AC voltage such that particles always accelerated when reaching the gap between the dees;
- in magnetic field, particles are deflected:
 p = q·B·R p = momentum, q = charge,
 B = magnetic field strength,
 - R = radius of curvature
- radius of path increases as momentum of proton increases time for passage always the same as long as momentum proportional to velocity; this is not true when velocity becomes too big
 - (relativistic effects)

Cyclotron

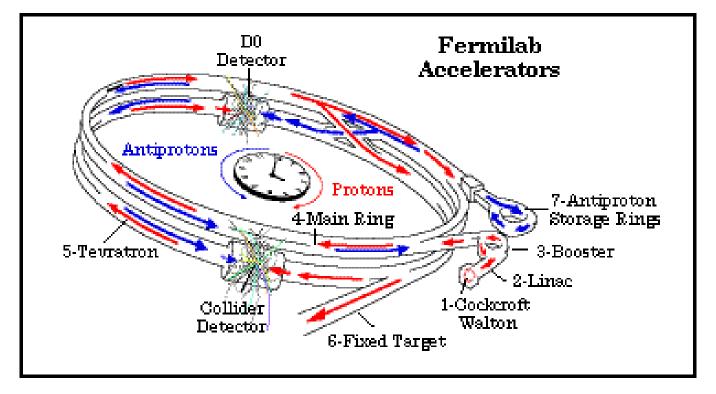
Accelerators: "relativistic effects"

"relativistic effects"

- special relativity tells us that certain approximations made in Newtonian mechanics break down at very high speeds;
- relation between momentum and velocity in "old" (Newtonian) mechanics: p = m v becomes p = mv γ, with


$$\gamma = 1/\sqrt{1-(v/c)^2}$$

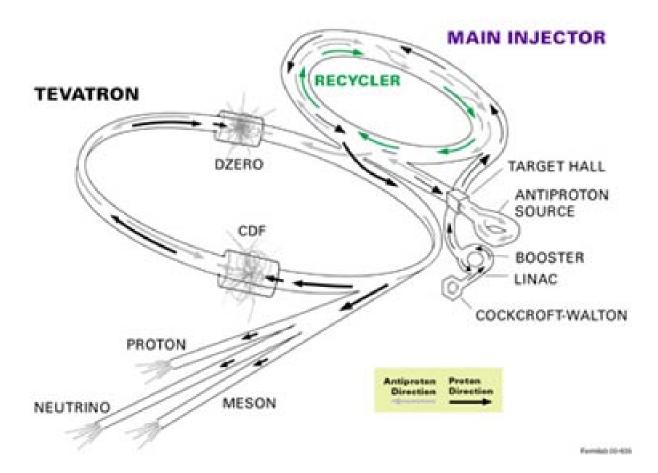
- m = "rest mass", i.e. mass is replaced by rest mass times γ
 - "relativistic growth of mass"
- factor γ often called "Lorentz factor"; ubiquitous in relations from special relativity; energy: E = mc² γ
- acceleration in a cyclotron is possible as long as relativistic effects are negligibly small, i.e. only for small speeds, where momentum is still proportional to speed; at higher speeds, particles not in resonance with accelerating frequency; for acceleration, need to change magnetic field B or accelerating frequency f or both;


Accelerators, cont'd

- electron linac
 - electrons reach nearly speed of light at small energies (at 2 MeV, electrons have 98% of speed of light); no drift tubes; use travelling e.m. wave inside resonant cavities for acceleration.
- synchrocyclotron:
 - B kept constant, f decreases;
- synchrotron:
 - B increases during acceleration, f fixed (electron synchrotron) or varied (proton synchrotron); radius of orbit fixed.

Fermilab accelerator complex

Fermilab Tevatron

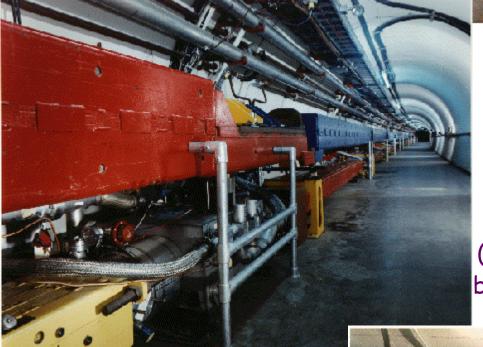


Fermilab aerial view

FERMILAB'S ACCELERATOR CHAIN

Birth and death of an antiproton: gestation

Cockroft-Walton (Hions) 1 MeV



Linac (H⁻ ions)
400 MeV

Birth... (continued)

- Booster
- 8 GeV

Main Ring (p's) 120 GeV

(now replaced by Main Injector)

 Debuncher and Accumulator (anti-p's) 8 GeV

Birth and death of an antiproton (cont'd)

• Finally, the accumulated stack of 8 GeV antiprotons, plus a new batch of 8 GeV protons from the Booster, are accelerated to 900 GeV by the Main Ring and the superconducting Tevatron working in tandem.

Main Ring (p's and anti-p's) 150 GeV

Tevatron (p's and anti-p's) 900 GeV

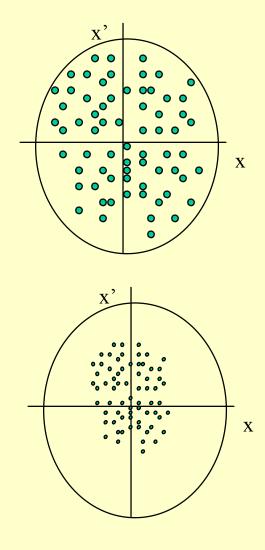
• The two counter-rotating beams are focused and brought into collision at the CDF and D \varnothing detectors.

Luminosity and cross section

- "integrated luminosity" is a measure of the amount of data collected (e.g. ~100 pb⁻¹)
- cross section σ is measure of effective interaction area, proportional to the probability that a given process will occur.
 - ◆ 1 barn = 10⁻²⁴ cm²
 - 1 pb = 10^{-12} b = 10^{-36} cm² = 10^{-40} m²
- interaction rate:

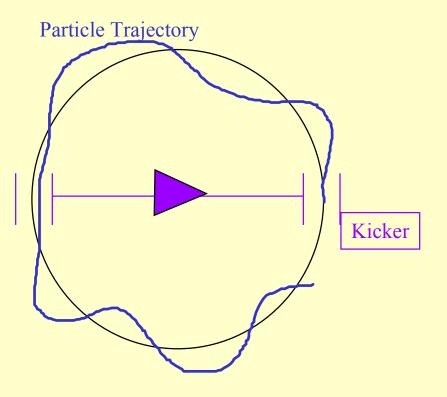
 $dn / dt = L \times \sigma \implies n = \sigma \int L dt$

Stochastic Cooling (from Paul Derwent's lectures)


Phase Space compression

Dynamic Aperture (emittance of beam): region of phase space where particles can orbit

Liouville's Theorem: local phase space density for conservative system is conserved


Continuous media vs discrete Particles

Swap Particles and Empty Area -- lessen physical area occupied by beam

Stochastic Cooling

- Principle of Stochastic cooling
 - Applied to horizontal betatron oscillation

- A little more difficult in practice.
- Used in Debuncher and Accumulator to cool horizontal, vertical, and momentum distributions
- Why COOLING?
 - Temperature ~ <Kinetic Energy> minimize transverse KE minimize ∆E longitudinally

Stochastic Cooling in the Pbar Source

- Standard Debuncher operation:
 - 10⁸ pbars, uniformly distributed
 - ~600 kHz revolution frequency
- To individually sample particles
 - Resolve 10⁻¹⁴ seconds...100 THz bandwidth
- Don't have good pickups, kickers, amplifiers in the 100 THz range
 - Sample N_s particles -> Stochastic process
 - N_s = ^N/_{2TW} where T is revolution time and W bandwidth
 - Measure <x> deviations for N_s particles
 - The higher bandwidth the better the cooling

Betatron Cooling

With correction ~ g<x>, where g is gain of system

New position: x - g<x>

• Emittance Reduction: RMS of kth particle

$$(x_k - g\langle x \rangle)^2 = x_k^2 - 2gx_k + g^2 \langle x \rangle^2$$
$$\langle x \rangle = \frac{1}{N_s} \sum_i x_i = \frac{1}{N_s} x_k + \frac{1}{N_s} \sum_{i \neq k} x_i$$

Average over all particles and do lots of algebra

$$\frac{d\langle x\rangle^2}{dn} = \frac{-2g\langle x^2\rangle}{N_s} + \frac{g^2}{N_s}\langle x^2\rangle, \text{ where n is 'sample'}$$

$$\Rightarrow$$
 Cooling rate $\frac{1}{\tau} = \frac{2W}{N} (2g - g^2)$


- Add noise (characterized by U = Noise/Signal)
- Add MIXING
 - Randomization effects M = number of turns to completely randomize sample

$$\Rightarrow$$
 Cooling rate $\frac{1}{\tau} = \frac{2W}{N} (2g - g^2[M + U])$

Net cooling effect if g sufficiently small

AntiProton Source

- Shorter Cycle Time in Main Injector
- Target Station Upgrades
- Debuncher Cooling Upgrades
- Accumulator Cooling Upgrades
 - GOAL: >20 mA/hour

