

1

Physics at the Fermilab Tevatron Collider

Darien Wood Northeastern University

Outline

- Introduction: collider experiments
- The Tevatron complex (review)
- Examples of physics studies at the Tevatron
 - jet production testing substructure
 - Search for extra space-time dimensions
 - Direct search for the Higgs boson
 - Precision measurements: W mass & top mass
 - Sleuth is there anything new?
- What's next

Motivating Questions

• Do the laws of physics that we understand continue to work at the smallest scales that we can probe?

- Are the known "fundamental particles" (quarks, leptons, vector bosons)" truly fundamental, or are they made of something else?
- Is there a higher mass or energy scale at which new types of particles or interactions can be seen?

Today's highest energy beams: Fermilab

Tevatron Collider

Collision energy = 1.96 TeV

Why use antiprotons?

Efficient annihilation of particle and antiparticle

Also, protons & antiprotons automatically travel in opposite orbits in the accelerator

Collision statistics

- Each collision is a random event; many different kinds of new particles could be produced
- Theory does not predict what will happen on a given event, but it does predict the probability for certain things happening (like top quark production).
- Probability of producing a top and and anti-top is around 1 event in 10¹⁰
- Some other processes are even more rare

Why Colliding Beams?

(see http://www-ed.fnal.gov/projects/exhibits/searching/)

Major particle colliders (past, present & future)

•

Lepton Colliders

- ~1974-1985, SPEAR
 - SLAC (Stanford, CA)
 - e+e-, $\sim 3 \text{ GeV}$
- 1979-present, CESR •
 - Cornell (Ithaca, NY)
 - e+e-, ~10 GeV
- ~1980-1990 PETRA, •
 - DESY (Hamburg)
 - − e+e-, ~35 GeV
- 1989-1998, SLC •
 - SLAC (Stanford, CA)
 - e+e-, ~90 GeV
- 1989-2000, LEP •
 - CERN (Geneva)
 - e+e-, ~200 GeV
- ~2020, NLC/TESLA •
 - (CA, IL, Hamburg?)
 - e+e+, 500 GeV

Hadron Colliders

- 1981-1990, SppbarS,
 - CERN (Geneva)
 - p-pbar, ~630 GeV
- 1987-present, Tevatron
 - Fermilab (Batavia, IL)
 - p-pbar, ~2 TeV
- 2006?, LHC
 - CERN (Geneva)
 - 14 TeV pp

Mixed Colliders

- 1992-present, HERA
 - DESY (Hamburg)
 - ep, 30+280 GeV

Experiment example #1: quark scattering

• Repeating Rutherfoord's experiment, essentially

- Detect energy & angle of outgoing quarks
- Note: quarks could be replaced with gluons very hard to distinguish
- At what distance scale is physics tested?

A closer look

(Too) simple minded calculation:

$$\lambda = \frac{hc}{pc} = \frac{1.2 \text{GeV} \cdot \text{fm}}{900 \text{GeV}} \approx 10^{-18} \text{m}$$

But this is a swindle, because typically, only a small fraction of the proton energy goes into the hard collision:

Quarks are not free, so what emerges is a collimated jet of hadrons along the original quark direction

Two-jet production is the most common hard scatter process ¹²

Spectrum of jet transverse energy

Angular distribution of two jet events

The ratio of (forward+backward)/(central) is plotted

Example 3: Direct Search for Higgs Boson

- The most important missing piece of the "Standard Model"
- Responsible for giving mass to all particles with mass
- Mass of Higgs itself is unknown, >115 GeV
- Likes to be produced with W's and Z's, the carriers of the weak interaction:

Example 4: precision measurements

• With enough measurement precision and statistics, it is possible to "see" objects smaller than the wavelength:

Wavefront distorted by interference effects

• Similarly, the properties of lower mass particles can be distorted by the effects of "virtual" higher mass particles

W Boson

- Discovered at CERN in 1982
- Now produced at both the Tevatron and LEP
- At DØ, its mass is measured precisely using the decay mode

 $W \rightarrow e v$

- Approximately 60,000 W events used in the mass measurement.
- Fit transverse mass (formed using quantities perpendicular to the beam direction)
- mass measured to less that 100 MeV (about 0.1%)

The top quark

- Discovered at the Tevatron in 1995
- Produced mostly in pairs

 $p\overline{p} \rightarrow t\overline{t} + X$

- almost every possible decay mode is used in its discovery and mass measurement
- about 90 events used in mass measurement.
- Mass measured to better than 5% by DØ

1) Define final states

Question: Is it possible to perform a *data*-driven search for new phenomena? 7) Does Sleuth find anything interesting in Run I data? No. A systematic \overline{p}_{4} search of many final states reveals 2 no evidence of new high p_T physics.

2) Define variables

3) Define regions

Sleuth

8) Apply to Run II

A quasi-model-independent new physics search strategy

i = 0

5) Run hypothetical similar experiments

6) Can Sleuth find something interacting? (vert)

interesting? (yes!)

Main points

- Creating collisions with lots of kinetic energy (in the center of mass system) makes it possible to create many different new particles
- Creation of massive particles requires more energy
- The average result of collisions can be predicted by theory (if the theory is correct) but each individual collision has a random outcome, so
 - Many different processes can be studied with the same experiment (with different analysis procedures)
 - Detecting rare processes requires the accumulation and examinatio of trillions of collisions.