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Outline

Introduction: collider experiments
The Tevatron complex (review)

Examples of physics studies at the Tevatron
— jet production — testing substructure
— Search for extra space-time dimensions
— Direct search for the Higgs boson
— Precision measurements: W mass & top mass

— Sleuth — 1s there anything new?
What’s next



Motivating Questions

* Do the laws of physics that we understand continue to
work at the smallest scales that we can probe?

» Are the known “fundamental particles” (quarks, leptons,
vector bosons)” truly fundamental, or are they made of
something else?

 Is there a higher mass or energy scale at which new types
of particles or interactions can be seen?



Today’s highest energy beams: Fermilab

TeVatron

Injector




Tevatron Collider

Beam:
980 GeV
protons

“Target”:
980 GeV
antiprotons

Collision energy = 1.96 TeV



Why use antiprotons?

Efficient
annihilation of
particle and Proton

antiparticle Q
u
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Antiproton

Also, protons & antiprotons automatically travel in
opposite orbits in the accelerator



Collision statistics

Each collision 1s a random event; many different kinds of
new particles could be produced

Theory does not predict what will happen on a given event,
but 1t does predict the probability for certain things
happening (like top quark production).

Probability of producing a top and and anti-top 1s around 1
event in 101"

Some other processes are even more rare @
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980 GeV proton

Hits proton at rest:

Js =30GeV

980 GeV proton
Hits 980 GeV
antiproton:

Js =1960GeV

Why Colliding Beams?

Fixed Target Mode

Before After
Jely] .
Proton hitting Result: Fast moving
fixed target light particles
Collider Mode
Before After
-

a0 °
o Foasiblec!eault:

0 Slowly moving,
very heavy particles

Colliding proton
and antiproton

(see http://www-ed.fnal.gov/projects/exhibits/searching/)



Major particle colliders (past, present &

Lepton Colliders

~1974-1985, SPEAR

— SLAC (Stanford, CA)

— ete-, ~3 GeV
1979-present, CESR

— Cornell (Ithaca, NY)

— ete-, ~10 GeV
~1980-1990 PETRA,

— DESY (Hamburg)

—  ete-, ~35 GeV
1989-1998, SLC

— SLAC (Stanford, CA)

— ete-, ~90 GeV
1989-2000, LEP

— CERN (Geneva)

—  ete-, ~200 GeV
~2020, NLC/TESLA

— (CA, IL, Hamburg?)

— etet, 500 GeV

future)

Hadron Colliders

1981-1990, SppbarS,

— CERN (Geneva)

— p-pbar, ~630 GeV
1987-present, Tevatron

— Fermilab (Batavia, IL)

— p-pbar, ~2 TeV
20067, LHC

— CERN (Geneva)

— 14 TeV pp

Mixed Colliders

1992-present, HERA
— DESY (Hamburg)
— ep, 30+280 GeV




Experiment example #1: quark scattering

Repeating Rutherfoord’s experiment, essentially

quark out
quark in /&/ antiquark in

antiquark out

Detect energy & angle of outgoing quarks

Note: quarks could be replaced with gluons — very hard to
distinguish
At what distance scale is physics tested?
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A closer look

(Too) simple minded calculation:

1= hc _ 1.2GeV -fm ~10%m

pc 900GeV

But this 1s a swindle, because typically, only a small
fraction of the proton energy goes into the hard collision:

o i Quarks are
antiproton :I 1 : ‘ not free, so what

L q(x) q et emerges 1S a

i. : q (x,) g q i I: jet collimated jet of

]

hadrons along the
original quark
direction .



An event observed in the detector:
(2-dimensional slice)

Charged tracks '
'm'
Point of collision — H_H
Colors correspond to energy H] E
deposited in a “cell” of the i

calorimeter

St

Note that energy 1s concentrated VE
In two narrow cones, or jets.
Two-jet production is the most common hard scatter process 12




Spectrum of jet transverse energy

Hard collision: _
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Angular distribution of two jet events

The ratio of (forward+backward)/(central) is plotted
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This 1s where
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you would expect to see

evidence of quark substrucure
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— JETRAD: CTEQ3M, u = 0.5E™ 2 =137
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Example 3: Direct Search for Higgs Boson

* The most important missing piece of the “Standard Model”
* Responsible for giving mass to all particles with mass

* Mass of Higgs itself 1s unknown, >115 GeV

» Likes to be produced with W’s and Z’s, the carriers of the

weak interaction: ) Predicted

-7 ’\1’ frequency:
I ~1 in 2x10'2

............... V | collisions

qbar’ H b

What would you see in the detector for
such an event? How could you be fooled? bbar
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Example 4: precision measurements

e With enough measurement precision and statistics, it 1s
possible to “see” objects smaller than the wavelength:

-~ \ \W v, Wavefront distorted by
. ‘ y 1 interference effects

« Similarly, the properties of lower mass particles can be
distorted by the effects of “virtual” higher mass particles
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“Self-interterence” of W boson

¢t m =175GeV

4 4
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W Boson

Discovered at CERN 1n 1982

Now produced at both the
Tevatron and LEP

At D@, 1ts mass 1s measured
precisely using the decay mode

W —ev

Approximately 60,000 W
events used in the mass
measurement.

Fit transverse mass (formed
using quantities perpendicular
to the beam direction)

mass measured to less that 100
MeV (about 0.1%)
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The top quark

Discovered at the Tevatron in
1995

Produced mostly 1n pairs
pp —>tt+X

almost every possible decay
mode 1s used in its discovery
and mass measurement

about 90 events used 1n mass
measurement.

Mass measured to better than
5% by DO
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W mass precision
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: Question: Is it possible to
j perform a data-driven
: search for new phenomena?

Y |

1) Define final states

SN

8) Apply to Run I1

Sleuth

12 e e e

7) Does Sleuth —

find anything o [ — Expectation |
interesting in ~ gs |

Run I data? o

No. A systematic E 4

search of many
final states reveals 2|
no evidence of new . '

-4 =3 =2 -1 0 1 2 3

high p; physics. £ 151
6) Can Sleuth find something
interesting?  (yes!)
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Main points

e Creating collisions with lots of kinetic energy (in the center
of mass system) makes it possible to create many different
new particles

* Creation of massive particles requires more energy

» The average result of collisions can be predicted by theory
(1f the theory 1s correct) but each individual collision has a
random outcome, SO

— Many different processes can be studied with the same experiment
(with different analysis procedures)

— Detecting rare processes requires the accumulation and examinatio
of trillions of collisions.
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